

	
F5	Networks	Application	Delivery	Fundamentals

Study	Guide
	

First	Edition
	
	
	

Philip	Jönsson	&	Steven	Iveson

	
Text	and	images	copyright	©	Philip	Jönsson	&	Steven	Iveson

2014
All	Rights	Reserved

Disclaimer
This	book	is	in	no	way	affiliated,	associated,	authorized,	endorsed	by	F5
Networks,	Inc.	or	any	of	its	subsidiaries	or	its	affiliates.	The	official	F5
Networks	web	site	is	available	at	https://www.f5.com.

F5,	Traffix,	Signaling	Delivery	Controller,	and	SDC	are	trademarks	or	service
marks	of	F5	Networks,	Inc.,	in	the	U.S.	and	other	countries.	A	full	list	of	F5
Networks’	marks	can	be	found	at	https://f5.com/about-us/policies/trademarks.
Trademarks	used	with	permission	of	F5	Networks,	Inc.
This	book	refers	to	various	F5	marks.		The	use	in	this	book	of	F5	trademarks	and
images	is	strictly	for	editorial	purposes,	and	no	commercial	claim	to	their	use,	or
suggestion	of	sponsorship	or	endorsement,	is	made	by	the	authors	or	publisher.

	

https://www.f5.com
https://f5.com/about-us/policies/trademarks

Permission	Notice
	

The	F5	Certified	logo	used	on	the	front	cover	of	this	book	is	a	registered
trademark	of	and	is	copyright	F5	Networks,	Inc.	F5	Networks,	Inc	has	granted
this	book’s	authors	permission	to	use	the	logo	in	this	manner.

Table	of	Contents
Disclaimer
Permission	Notice

Preface
About	The	Authors
Dedications
Acknowledgements
Feedback

1.														Introduction
The	Book	Series
Who	is	This	Book	For?
How	This	Book	is	Organized
F5	Networks	the	Company
F5	Terminology

2.														The	Application	Delivery	Fundamentals	Exam
The	F5	Professional	Certification	Program
Additional	Resources

3.														The	OSI	Reference	Model
Layer	1	–	Physical	Layer
Layer	2	–	The	Data	Link	Layer
Layer	3	–	The	Network	Layer
Layer	4	–	The	Transport	Layer
Layer	5	–	The	Session	Layer
Layer	6	–	The	Presentation	Layer
Layer	7	–	The	Application	Layer
Chapter	Summary
Chapter	Review

Chapter	Review:	Answers
4.														The	Data	Link	Layer	in	Detail
Ethernet	Access	Method	CSMA/CD
Collision	Domains
MAC	Addressing
Broadcast	Domains
Address	Resolution	Protocol	(ARP)
VLANs	&	VLAN	Tagging
Link	Aggregation	Control	Protocol	(LACP)
Chapter	Summary
Chapter	Review
Chapter	Review:	Answers

5.														The	Network	Layer	in	Detail
Understanding	IP	Addressing
Converting	Between	Binary	&	Decimal
Addresses	Classes
Private	Addresses
Classless	Inter-Domain	Routing	(CIDR)
Broadcast	Addresses
Fragmentation
Time	to	Live	(TTL)
TCP/IPv6
Different	IPv6	Addresses
The	Structure	of	an	IPv6	Address
Chapter	Summary
Chapter	Exercises
Chapter	Exercises	–	Answers
Chapter	Review

Chapter	Review:	Answers
6.	The	Transport	Layer	in	Detail
Transmission	Control	Protocol	–	TCP
TCP	Options
The	Three	Way	Handshake	(3WHS)
User	Datagram	Protocol	–	UDP
TCP	Device	Communications
Retransmission
MTU	&	MSS
Flow	Control	&	Window	Size
Silly	window
Ports	&	Services
TCP	Reset	Packets
Delayed	Binding
Chapter	Summary
Chapter	Review
Chapter	Review:	Answers

7.	Switching	&	Routing
Switching
Routing
Dynamic	Routing	Protocols
IP	&	MAC	Address	Changes
Routing	In	Action
Network	Address	Translation	(NAT)
Chapter	Summary
Chapter	Review
Chapter	Review:	Answers

8.	The	Application	Layer	in	Detail

Hypertext	Transfer	Protocol	(HTTP)
Domain	Name	System	(DNS)
Session	Initiation	Protocol	(SIP)
File	Transfer	Protocol	(FTP)
The	Difference	between	Active	FTP	and	Passive	FTP
Simple	Mail	Transfer	Protocol	(SMTP)
Chapter	Summary
Chapter	Review
Chapter	Review:	Answers

9.	F5	Solutions	&	Technology
Access	Policy	Manager	(APM)
Application	Security	Manager	(ASM)
Local	Traffic	Manager	(LTM)
Global	Traffic	Manager	(GTM)
Enterprise	Manager	(EM)
WebAccelerator	(WAM)
WAN	Optimization	Manager	(WOM)
Edge	Gateway
ARX
iRules
iApps
iControl
iHealth
iQuery
Full	Application	Proxy
Packet	Based	Proxy/FastL4
High	Availability	(HA)
Chapter	Summary

Chapter	Review
Chapter	Review:	Answers

10.	Load	Balancing	Essentials
What	Is	A	Load	Balancer?
Load	Balancing	Methods
Persistence
OneConnect
The	Client	&	Server
Chapter	Summary
Chapter	Review
Chapter	Review:	Answers

11.	Security
Positive	&	Negative	Security	Models
Authentication	and	Authorization
Virtual	Private	Networks	(VPNs)
Chapter	Summary
Chapter	Review
Chapter	Review:	Answers

12.	Public	Key	Infrastructure	(PKI)
What	is	Public	Key	Infrastructure?
The	Basics	of	Encryption
Symmetric	Encryption
Asymmetric	Encryption
The	Hash	Process
Hash	Algorithms
Digital	Signing
Combining	Asymmetric	Signing	&	Hash	Algorithms
Certificate	Chains	and	Certificate	Authorities

Certificate	Revocation	Lists	(CRLs)
Chapter	Summary
Chapter	Review
Chapter	Review:	Answers

13.	Application	Delivery	Platforms
BIG-IP	Hardware
BIG-IP	Virtual	Edition	(VE)
Virtual	Edition	vs.	Hardware
TCP	Optimisation
HTTP	Pipelining
HTTP	Caching
HTTP	Compression
Further	Reading
Chapter	Summary
Chapter	Review
Chapter	Review:	Answers

Appendix	A	-	How	Does	SAML	Work?
Appendix	B	–	A	History	of	Load	Balancing

Preface
	

About	The	Authors
	

Philip
Philip	Jönsson	was	born	in	Malmö	City,	Sweden	1988	where	he	still	lives	with
his	wife.	He	gained	interest	in	technology	at	an	early	age.	When	he	was	eight
years	old	the	family	got	a	home	PC	which	was	the	first	step	in	his	career.

	
Since	Philip	had	a	big	interest	in	technology,	choosing	an	education	was	easy.
His	IT-studies	started	at	NTI	(The	Nordic	Technical	Institute)	where	he	studied
the	basics	of	computer	technology	and	eventually	focused	on	network
technology.	Later	on	he	studied	IT-security	at	Academedia	Masters.

	
Philip’s	first	job	in	the	IT	business	was	at	a	home	electronics	company	in
Sweden.	He	worked	at	the	IT-department	and	was	responsible	for	managing	and
troubleshooting	the	sales	equipment	in	the	different	stores	and	managing	the	IT-
infrastructure	within	the	organization.	This	is	where	Philip	first	encountered	a
BIG-IP	controller.

	
Philip	eventually	started	working	in	a	NOC	(Network	Operations	Center)
department	at	an	IT	security	company	that	works	with	some	of	the	largest
companies	in	Sweden	and	as	of	this	book’s	printing	he’s	still	there.	For	about	2
years	his	responsibility	has	been	to	troubleshoot	and	handle	incidents	and
problems.	Now	he’s	working	with	changes	and	implementations	where	F5	plays
a	big	part.
Steve

Steven	Iveson,	the	last	of	four	children	of	the	seventies,	was	born	in	London	and
was	never	too	far	from	a	shooting,	bombing	or	riot.	He's	now	grateful	to	live	in	a
small	town	in	East	Yorkshire	in	the	north	east	of	England	with	his	wife	Sam	and
their	four	children.	He's	worked	in	the	IT	industry	for	over	15	years	in	a	variety
of	roles,	predominantly	in	data	centre	environments.
	

Steve	first	encountered	a	BIG-IP	Controller	in	2004	and	has	been	working	with

TMOS	and	LTM	since	2005.	Steve’s	iRules	have	been	featured	in	two
DevCentral	20	Lines	or	Less	articles,	he’s	made	over	3000	posts	on	the
DevCentral	forums	and	he’s	been	F5	certified	since	2010.
	

Dedications
	

Philip
I	would	like	to	dedicate	this	book	to	my	wife	Helena	and	my	family	for	their
support	throughout	the	writing	of	this	book.	A	lot	of	late	nights	and	spare	time
has	gone	into	this	book	but	she	has	never	complained.

	
Steve

For	Linda	Iveson;	her	strength	and	bravery	facing	and	overcoming	so	many	great
obstacles,	for	so	long,	still	inspires	me.	The	capacity	for	love,	resilience	and
tenacity	you’ve	passed	to	my	siblings	and	I	is	beyond	compare.
	

Acknowledgements
	

Philip
First	off	I	would	like	to	thank	Holger	Yström	for	making	this	eBook	possible.
With	his	help,	the	original	study	guide	was	acknowledged	by	many	F5
representatives	and	made	it	all	the	way	to	the	corporate	headquarters	in	Seattle.
Without	his	help	the	original	Study	Guide	would	not	have	become	this	big	and
I’m	forever	grateful.

	
I	would	also	like	to	thank	my	bosses	Mathias	Åberg	and	Mats	Borgström	for
giving	me	the	opportunity	to	widen	my	knowledge	and	experience	of	F5
products.

	
Thanks	to	my	department	for	the	encouragement	and	support	throughout	the
writing	of	this	eBook.

	
A	special	thanks	to	Sharon	McGlinn	for	helping	me	proof	my	material	and
making	sure	that	my	material	does	not	contain	any	grammar	or	spelling
mistakes.	Hopefully	we	haven’t	missed	anything!
	

Thanks	to	the	Designerz	who	created	the	cover	and	the	design	of	the	eBook,	you
did	a	great	job!
	

Thanks	to	F5	for	making	this	possible	and	for	all	the	help	we’ve	got	in	making
this	eBook.	Two	honourable	mentions	are	Kenneth	Salchow	and	Suzanna
Litwin.	You	have	both	been	great	to	work	with	and	have	always	provided	us
with	great	input	and	assistance.
	

Finally	I	would	like	to	thank	Steven	Iveson	for	wanting	to	participate	in	this
collaboration.	Your	contribution	to	this	eBook	has	truly	raised	its	value	and	it
has	been	a	pleasure	working	with	you.

	
Steve

Most	of	the	information	found	in	this	book	is	available	elsewhere,	I’ve	mostly
just	searched	for	it,	gathered	it	up,	put	the	pieces	together	and	presented	it	in
what	I	hope	is	a	useful	format	and	organised	structure.	That	being	the	case,	I’m
keen	to	acknowledge	those	that	have	produced	the	materials	which	have	formed
the	basis	of	this	book.
	

Thanks	to	the	many	who’ve	taken	the	time	to	contribute	to	DevCentral	(DC)	to
inform,	educate	and	assist	others,	myself	included.
	

A	special	mention	to	the	following	F5	staff	members	and	DC	contributors:	Colin
Walker,	an	iRules	guru,	Joe	Pruitt	(username:	Joe)	who	created	DevCentral	and
now	manages	F5’s	Facebook	pages	amongst	other	things,	Aaron	Hooley
(username:	hoolio)	who’s	made	over	12	thousand	posts	on	DC,	Nitass
Sutaveephamochanon	(username:	nitass)	and	Kevin	Stewart.
	

Finally,	thanks	to	Philip	for	making	this	book	happen	in	the	first	place.
	

Feedback
Philip

If	you	have	any	comments,	corrections	or	feedback	regarding	this	book,	feel	free
to	send	me	an	email	on	Philip.r.jonsson@gmail.com.	You’re	also	very	welcome
to	connect	on	Linkedin.	You	can	find	my	public	profile	at:	LinkedIn.
	

Steve
Feedback,	comments	and	corrections	are	more	than	welcome	at:
sjiveson@outlook.com.	You	can	follow	me	on	Twitter:	@sjiveson,	read	my
blogs	at	http://packetpushers.net/author/siveson/	and	you’re	welcome	to	connect
on	LinkedIn.

You	can	also	join	this	book’s	Linkedin	group	by	searching	Linkedin	for:	‘All
Things	F5’.	This	is	an	independent	group	that	is	not	associated	with	F5.

mailto:Philip.r.jonsson@gmail.com
https://www.linkedin.com/pub/philip-j%C3%B6nsson/3a/680/810
mailto:sjiveson@outlook.com
https://www.penflip.com/sjiveson
http://packetpushers.net/author/siveson/
http://uk.linkedin.com/in/steveniveson/en

1.										Introduction
	

The	Book	Series
	

This	is	the	fourth	book	in	a	planned	series	covering	the	complete	range	of	BIG-
IP	and	related	module	features	and	concepts,	core	TMOS	technologies	and
relevant	fundamental	topic	areas,	the	others	(in	an	unconfirmed	order	of	likely
publication)	are;

An	Introduction	to	F5	Networks	LTM	iRules	(published	and	on	its	second
edition)
	
An	Introduction	to	the	F5	Networks	HMS	v11	(published	and	on	its	second
edition)
	
An	Introduction	to	F5	Networks,	BIG-IP,	TMOs	and	LTM	v11	Volume
One	(published)
	
The	F5	Networks	Application	Delivery	Fundamentals	101	Study	Guide
(this	book)
	
An	Introduction	to	F5	Networks,	BIG-IP,	TMOS	and	LTM	v11	Volume
Two	(due	next)
	
The	F5	Networks	BIG-IP	Administration	201	Study	Guide
	
F5	Networks	BIG-IP	Advanced	Firewall	Manager
	
F5	Networks	BIG-IP	LTM	Advanced	Configuration	&	Design
	
F5	Networks	BIG-IP	&	TMOS	v11	Security
	
F5	Networks	BIG-IP	&	TMOS	v11	Operations	&	Troubleshooting
	

	
Suggestions	and	ideas	from	readers	on	other	topics	and	subjects	for	new	or
existing	books	are	always	welcome;	refer	to	the	Feedback	section	in	the	Preface
for	contact	details.

	

Who	is	This	Book	For?
	

This	book	is	designed	to	provide	the	reader	and	student	with	everything	they
need	to	know	and	understand	in	order	to	pass	the	F5	Application	Delivery
Fundamentals	101	exam.	All	generic	networking,	application,	protocol	and	F5
specific	topics	and	elements	found	in	the	exam	blueprint	are	covered	in	full	and
in	detail.
	
No	prior	knowledge	is	assumed	and	the	book	includes	review	summaries,	over
90	diagrams	and	over	40	test	questions	to	aid	understanding	and	assist	in
preparing	for	the	exam.
	
Even	those	attending	official	F5	training	courses	will	find	this	book	of	benefit	as
those	courses	only	cover	the	F5	specific	elements	of	the	curriculum.
	

How	This	Book	is	Organized
	

Most	readers	should	read	and	study	this	book	from	start	to	finish,	front	to	back.
As	with	the	official	F5	blueprint,	things	move	from	the	simple	and	abstract	to	the
more	complex	and	detailed	and	each	topic	builds	upon	the	knowledge	gained	in
earlier	ones.	We’ve	ordered	the	book’s	chapters	and	sections	to	mostly	reflect
the	order	of	that	exam	blueprint,	although	in	a	few	cases	where	we’ve	felt	it’s
more	appropriate	we’ve	ignored	it.
	

Obviously	if	you	feel	you	already	fully	understand	a	particular	subject	area
you’re	free	to	skip	past	it	(this	is	most	likely	with	the	OSI	Model	chapter	we’d
imagine)	but	at	least	take	a	look	at	the	topics	it	covers	to	ensure	you’re	not
missing	something.	You	may	think	you	know	TCP/IP	inside	out	but	what	about
IPv6?	When	was	the	last	time	you	thought	about	TCP	error	correction?
	

Each	chapter	starts	with	a	brief	overview	of	the	topics	that	will	be	covered	and
many	end	with	a	useful	review	summary	as	well	as	some	simple	questions	to	test
your	understanding.	The	chapters	of	the	book	and	their	contents	are	as	follows;
	

This	chapter,	Chapter	1	–	Introduction	provides	the	background;
overviews	of	load	balancing	and	Application	Delivery	Controller
technologies	and	benefits,	F5	Networks	the	company	and	its	history	and
the	hardware	and	software	products.

	
Chapter	2	–	The	Application	Delivery	Fundamentals	Exam	describes
the	wider	technical	certification	program,	the	exam	and	offers	a	list	of
useful	additional	study	resources.

	
Chapter	3	–	The	OSI	Reference	Model	steps	through	the	first	subject
detailed	in	section	one	of	the	exam	blueprint;	the	OSI	model,	and	provides
an	overview	of	each	layer.

	

Chapter	4	–	The	Data	Link	Layer	in	Detail	covers	layer	two	of	the	OSI
model	in	depth;	CSMA/CD,	MAC	addressing,	collision	and	broadcast
domains,	ARP,	VLANs	and	LACP	are	all	explored.

	

Chapter	5	–	The	Network	Layer	in	Detail	moves	on	to	layer	three	of	the
OSI	model	and	IP	host	and	network	addressing,	address	classes,
subnetting,	fragmentation,	TTL	and	IPv6.

	

Chapter	6	–	The	Transport	Link	Layer	in	Detail	provides	an	in-depth
review	of	layer	four	of	the	OSI	model,	covering	subjects	such	as	TCP,
UDP,	retransmission,	MTU,	flow	control,	ports	and	services	and	many
more.
	
Chapter	7	–	Switching	&	Routing	describes	these	fundamental	layer	two
and	three	network	functions	and	how	they	interact	in	detail	as	well	as
NAT.
	
Chapter	8	–	The	Application	Layer	in	Detail	covers	layer	seven	of	the
OSI	model,	the	application	layer	and	some	of	its	most	popular	protocols;
HTTP,	DNS,	SIP,	FTP	and	SMTP.
	
Chapter	9	–	F5	Solutions	&	Technology	offers	information	on	all	the
subjects	detailed	in	section	two	of	the	exam	blueprint;	the	numerous
TMOS	feature	modules,	core	TMOS	features,	proxy	modes	of	operation
and	high	availability.

	

Chapter	10	–	Load	Balancing	Essentials	moves	on	to	section	three	of	the
exam	blueprint;	fundamental	load	balancing	functions,	methods	and
persistence.

	

Chapter	11	–	Security	explains	subjects	detailed	in	section	four	of	the
exam	blueprint;	core	security	concepts,	and	takes	a	look	at	some	of	the
most	common	security	solutions	in	use	today	for	performing	authentication
and	authorisation,	as	well	as	VPN	and	IPsec	technologies.

	
Chapter	12	–	Public	Key	Infrastructure	further	expands	on	this	specific
area	of	security	and	subjects	such	as	encryption,	digital	signing	and
certificates.
	
Chapter	13	–	Application	Delivery	Platforms	takes	a	close	look	at
blueprint	section	five;	BIG-IP	hardware	and	virtualised	software	solutions
and	compares	and	contrasts	the	two.	TCP	Optimisations	and	more
advanced	HTTP	features	are	also	explored

	

F5	Networks	the	Company
	

Created	as	F5	Labs	in	1996*	by	Michael	D.	Almquist**	(aka	Mad	Bomber	and
Squish,)	a	technical	entrepreneur	and	programmer	and	Jeffrey	S.	Hussey,	an
investment	banker.	F5	released	its	first	HTTP	web	server	load	balancing	device:
the	BIG-IP	Controller,	in	1997.	The	company,	head-quartered	in	Seattle,
Washington	since	its	inception,	has	grown	rapidly	to	date	(barring	a	lull	during
the	dot.com	collapse	between	1999	and	2001)	and	has	expanded	its	product
offerings	significantly.	They	now	produce	a	wide	range	of	dedicated	hardware
and	virtualised	appliance	ADCs.	As	well	as	load	balancing	these	can	provide
SSL	offload,	WAN	acceleration,	application	acceleration,	firewalling,	SSL	VPN,
remote	access	and	much	more.
	
Michael	Almquist	left	the	company	in	May	1998	over	a	year	before	the	company
went	public	on	NASDAQ	(symbol:	FFIV)	in	June	1999	and	was	renamed	F5
Networks.	By	mid-2005,	industry	analyst	firm	Gartner	reported	F5	had	captured
the	highest	share	of	the	overall	ADC	market	and	by	late	2013***	the	company
earned	more	than	$1.5	billion	in	annual	revenue	and	employed	over	3,400	people
in	59	locations	around	the	world.	The	company	has	no	long	term	debt	and	assets
of	over	$2	billion.	Services	earned	46.1%	of	revenues	and	products	53.9%,	with
the	largest	sales	market	being	the	Americas,	followed	by	EMEA,	APAC	and
Japan.	Research	and	development	expenses	for	the	financial	year	were	$209m.
	
According	to	Netcraft®,	in	May	2009,	4.26%	of	all	websites	and	around	3.8%	of
the	top	million	sites	were	being	served	through	F5	BIG-IP	devices.	A	look	at	this
Netcraft	page:	http://uptime.netcraft.com/up/reports/performance/Fortune_100
shows	that	on	7th	February	2014,	20%	of	the	US	Fortune	100's	public	websites
were	served	through	F5	BIP-IP	ADCs	including	those	of	Bank	of	America,	Dell,
Disney,	Lehman	Brothers,	Lockheed	Martin,	Wachovia	and	Wells	Fargo.
	
The	company's	Scottish	born	President	and	CEO	John	McAdam	has	held	these
roles	since	July	2000.
	
The	company	name	was	inspired	by	the	1996	movie	Twister,	in	which	reference
is	made	to	the	fastest	and	most	powerful	tornado	on	the	Fujita	Scale:	F5.

http://uptime.netcraft.com/up/reports/performance/Fortune_100

	
Significant	technical	milestones	and	business	events	in	F5	Networks’	history
include;
	

1895	–	Nortel®	is	founded	(as	Northern	Telecom	Limited)
1995	–	Brocade®	is	founded
1996	–	F5	is	incorporated	(February)
1996	–	Cisco®	launches	LocalDirector;	technology	based	on	its	acquisition
of	Network	Translation	Incorporated	that	same	year	(the	PIX®	firewall
platform	also	sprung	from	this	acquisition)
1996	–	Foundry	Networks®	is	founded	(originally	called	Perennium
Networks	and	then	StarRidge	Networks,	renamed	Foundry	in	1997)	(later
to	be	acquired	by	Brocade	in	2008)
1996	–	Alteon	Networks®	is	founded	(later	to	be	acquired	by	Nortel	in
2000)
1997	–	F5	Launches	its	first	BIG-IP	Controller	(July)
1997	–	ArrowPoint	Communications®	is	founded	by	Chin-Cheng	Wu
(later	to	be	acquired	by	Cisco	in	2000)
1998	–	F5	Launches	the	3DNS	Controller	(September)
1998	–	Reactivity	is	founded
1998	–	NetScaler	is	founded
1999	–	F5	Goes	public	on	NASDAQ	(June)
2000	–	Cisco	acquires	ArrowPoint	Communications	(at	a	cost	of	$5.7b)	for
their	content	switching	technology	which	they	release	as	the	Content
Services	Switch	(CSS)	range	the	same	year	but	fails	to	develop	the	product
further
2000	–	Redline	Networks®	is	founded	(later	to	be	acquired	by	Juniper	in
2005)
2000	–	FineGround	Networks®	founded	(later	to	be	acquired	by	Cisco	in
2005)
2000	–	MagniFire	Websystems®	founded	(later	to	be	acquired	by	F5	in
2004)
2000	–	Peribit	Networks®	(WAN	optimisation)	founded	(later	to	be
acquired	by	Juniper®	in	2005)

2000	–	Nortel	acquire	Alteon	Networks	(at	a	cost	of	$6b	in	stock)	(the
Alteon	application	delivery	assets	later	to	be	acquired	by	Radware®	in
2009)
2001	–	The	iControl	XML-based	open	API	is	introduced	by	F5	with	v4
2002	–	v4.5	Released	and	includes	the	UIE	and	iRules
2002	–	Acopia	Networks®	founded	by	Chin-Cheng	Wu	(who	also	founded
ArrowPoint	Communications	in	1997)	(later	to	be	acquired	by	F5	in	2007)
2002	–	Crescendo	Networks®	founded	(later	to	have	its	IP	acquired	by	F5
in	2011)
2003	–	F5's	DevCentral	Community	and	technical	reference	website
launched
2003	–	F5	Acquires	uRoam	(at	a	cost	of	$25m)	for	its	FirePass	technology
(SSL	VPN,	application	and	user	security)
2004	–	F5	Acquires	MagniFire	Websystems	(at	a	cost	of	$29m)	for	its	web
application	firewall	(WAF)	technology	TrafficShield,	which	forms	the
basis	of	the	ASM	product
2004	–	F5	releases	TMOS	v9	and	TCL-based	iRules
2004	–	Zeus	Technology®	releases	Zeus	Traffic	Manager
2005	–	F5	Acquires	Swan	Labs®	(at	a	cost	of	$43)	for	its	WAN
optimization	technology	(WANJet)
2005	–	Juniper	Networks	purchases	Peribit	Networks	(WAN	optimisation)
and	Redline	Networks	(ADCs)	at	a	cost	of	$337m	and	$132m	respectively
2005	–	Cisco	acquires	FineGround	Networks	(at	a	cost	of	$70m)	and
integrates	its	technology	with	the	Catalyst	switch	line	to	create	the	ACE
product
2005	–	Cisco	launch	numerous	Application-Oriented	Networking	(AON)
products	to	support	the	convergence	of	‘intelligent	networks’	with
application	infrastructure
2005	–	Citrix	acquires	NetScaler	(at	a	cost	of	$300m)
2006	–	Lori	MacVittie	joins	F5
2007	–	Don	MacVittie	joins	F5
2007	–	A10	Networks®	launches	its	AX	Series	family	of	ADC	appliances
2007	–	F5	Acquires	Acopia	Networks	(at	a	cost	of	$210m)	for	its	file
virtualisation	technology,	which	is	later	re-branded	as	its	ARX	range

2007	–	Cisco	acquires	Reactivity	(at	a	cost	of	$135m)	for	its	XML	gateway
technology,	which	they	launch	as	the	ACE	XML	Gateway	product	the
same	year
2008	–	F5's	VIPRION	modular,	blade	based	hardware	is	released
2008	–	Juniper	discontinues	it's	DX	line	of	load	balancers	based	on	the
Redline	Networks	technology	acquired	in	2005
2008	–	LineRate	Systems®	is	founded
2008	–	Foundry	Networks	is	acquired	by	Brocade	(at	a	cost	of	$2.6b
(Brocade	originally	offered	$3b))
2009	–	Nortel	ceases	operations
2009	–	Radware	acquire	Nortel's	Alteon	application	delivery	assets	(at	a
cost	of	$18m)
2009	–	F5	Releases	TMOS	and	LTM	v10
2010	–	Cisco	ACE	XML	Gateway	sales	end
2010	–	Cisco	Application-Oriented	Networking	(AON)	products	sales	end
2011	–	F5	Releases	TMOS	and	LTM	v11
2011	–	F5	Acquires	Crescendo	Networks	intellectual	property	(at	a	cost	of
$5.6m)	for	its	application	acceleration	technology
2011	–	Riverbed®	acquires	Zeus	Technology	(at	a	cost	of	$110m)	for	its
software	based	ADC	product	Zeus	Traffic	Manager	and	rebrands	it	as
Stingray		(rebranded	again	as	SteelApp™	in	2014)
2011	–	Cisco	CSS	sales	end
2012	–	F5	Acquires	Traffix	Systems®	(at	a	cost	of	$140m)	for	its
mobile/cellular	4G/LTE	and	Diameter	signalling	protocol	switching
technology
2012	–	Riverbed	and	Juniper	form	a	partnership	in	WAN	optimisation	and
application	delivery	products,	with	Juniper	licensing	the	Riverbed	Stingray
(later	renamed	SteelApp™)	software	ADC	and	Riverbed	integrating
Steelhead	Mobile	technology	into	Juniper's	JunOS	Pulse	client
2012	–	Cisco	end	development	of	their	ACE	load	balancing	products	and
partner	with	Citrix	to	recommend	NetScaler	as	their	preferred	product
2013	–	F5	Acquires	LineRate	Systems	(at	a	cost	of	$125m)	for	its	layer
seven	and	application	delivery	software	defined	networking	technology
2013	–	F5	Acquires	Versafe®	(at	an	unknown	cost)	for	its	mobile	and

browser	security	and	monitoring	products	(the	TotALL	suite)
2013	-	The	iControl	REST	open	API	is	introduced	by	F5	with	TMOS
v11.4
2013	–	F5	Becomes	an	OpenStack	corporate	sponsor
2013	–	F5	Launches	the	Synthesis	frame	work	and	introduces	SDAS:
Software-Defined	Application	Services™
2013	–	F5	Reduces	the	price	of	the	10Mb	limited	Lab	Edition	of	BIG-IP
VE	(including	LTM,	GTM,	AFM,	ASM,	AVR,	PSM,	WAM	and	WOM)
from	around	$2000	to	just	$95,	in	a	gutsy	move	to	capture	market	share
2014	–	Riverbed	rename	Stingray	(formerly	Zeus	Traffic	Manager)	to
SteelApp™
2014	–	F5	Acquire	Denfense.Net®	(at	an	unknown	cost)	for	its	cloud-
based	DDoS	mitigation	technology	and	services

	
Having	gained	a	leading	market	share	in	the	load	balancing	and	local	traffic
management	enterprise	market	for	some	time	F5	is	now	targeting	and	looking
for	growth	in	additional	markets,	supported	and	evidenced	by	their	ever
expanding	product	range.	These	markets	include;	security	(AFM,	ASM	and
APM),	cloud	(AWS	etc.),	mobile	signalling	(Traffix)	and	acceleration,
virtualisation,	WAN	optimisation	and	SSL	VPN	and	RAS.
	
*This	article	suggests	it	was	actually	late	1995:
http://www.udel.edu/PR/Messenger/98/1/cyber.html	although	it	was	indeed	early
1996	when	the	company	was	incorporated.
	
**You’ll	find	in	many	sources	that	Michael	Almquist	has	effectively	been
written	out	of	the	company’s	history.
	
***Data	taken	from	the	company’s	September	2013	financial	year	end	10K
annual	report	found	here.
	

http://www.udel.edu/PR/Messenger/98/1/cyber.html
http://www.sec.gov/Archives/edgar/data/1048695/000144530513003079/ffiv10k9-30x2013.htm

F5	Terminology
	

Before	we	get	into	the	exam	specifics	I	think	it’s	worthwhile	exploring	the
terminology	surrounding	F5	Networks’	products.	This	isn’t	tested	on	the	exam	in
any	way	but	without	an	understanding	of	the	terms	you’ll	find	in	this	book	and
elsewhere	and	particularly	how	they	relate	to	F5’s	hardware	and	software,	things
will	be	harder	for	you	than	they	need	to	be.	To	that	end,	the	next	three	sections
will	explore	the	primary	marketing	term	for	the	overall	product	range	and	then
move	on	to	the	terms	used	in	relation	to	the	hardware	and	software	(some	of
which	are	the	same!)
	

What	Is	BIG-IP?
	
So,	just	what	is	BIG-IP?	It’s	confusing;	back	in	the	day,	BIG-IP	was	the	single
name	for	everything	and	all	you	had	was	the	BIG-IP	Controller.	Now,	things	are
a	bit	different	and	you	have	the	application	switch	hardware,	virtual	edition,
TMOS,	TMM,	LTM,	GTM	and	all	the	rest.	To	add	to	the	confusion	BIG-IP	is
quite	often	used	interchangeably	with	TMOS	or	even	just	F5.	As	specific	and
well,	simply	pedantic	I	can	be	I	still	catch	myself	saying	things	like	“check	your
F5’s	logs…”	or	“what’s	the	CPU	load	on	this	BIG-IP.”

	
So,	back	to	the	question,	what	is	BIG-IP?	Well,	simply	put	it’s	all	of	the	things
I’ve	mentioned	so	far;	it’s	an	all-encompassing	term	for	the	hardware,	the
Virtual	Edition	container,	TMOS	(the	software	components),	TMM	(a
component	of	TMOS),	LTM	(which	runs	within	TMM),	GTM	and	all	the	other
modules.

	

BIG-IP	Hardware
	

When	discussing	BIG-IP	hardware,	things	become	rather	more	specific	but	keep
in	mind	that	for	many	hardware	components	there	will	be	a	related	software
component	that	runs	on	top	of	it,	which	has	the	same	name.	The	primary
hardware	elements	and	their	purpose	are	as	follows;

	
Traffic	Management	Microkernel	(TMM);	traffic	processing	hardware
components	as	follows;

	
A	L2	switch	module	(possibly	using	network	processing	NICs)
	
Packet	Velocity	ASIC(s)	(PVAs)	or	Embedded	PVA	(ePVA)	using
FPGAs

	
FPGAs	providing	ePVA,	SYN	check	and	other	functions	in	hardware

	

Dedicated	SSL	encryption	or	FIPS	hardware
	

Dedicated	compression	hardware	(in	some	models)
	

TMM	uses	all	CPUs	(although	one	is	shared	with	the	HMS)	and
almost	all	system	RAM,	a	small	amount	being	provisioned	for	the
HMS.

	
Host	Management	Subsystem	(HMS);	responsible	for	system
management	and	administration	functions	and	runs	a	version	of	CentOS
(Community	enterprise	Operating	System)	Linux	(which	includes	the
SELinux	feature).	The	HMS	uses	a	single	CPU	(shared	with	TMM)	and	is
assigned	a	dedicated	provision	of	the	overall	system	RAM,	the	rest	being
assigned	to	TMM.

	
Always	On	Management	(AOM);	provides	additional	'lights	out'
management	of	the	HMS	via	a	Management	processor	as	well	as	layer	2
switch	management	and	other	supporting	functions	for	TMM.

	

	

BIG-IP	Software	–	TMOS
The	primary	software	elements	of	BIG-IP,	collectively	known	as	TMOS,
encompass	all	of	these	things;													

TMM;
Software	in	the	form	of	an	operating	system,	system	and	feature
modules	(such	as	LTM),	other	modules	(such	as	iRules)	and	multiple
network	‘stacks’	and	proxies;	FastL4,	FastHTTP,	Fast	Application
Proxy,	TCPExpress,	IPv4,	IPv6	and	SCTP.
	
Software	in	the	form	of	the	interface	to	and	the	firmware	that
operates	the	dedicated	SSL	and	other	cards	and	hardware.

	
A	‘native’	SSL	stack.

	
Interfaces	to	the	HMS.

	

HMS;	this	runs	a	modified	version	of	the	CentOS	Linux	operating	system
and	provides	the	various	interfaces	and	tools	used	to	manage	the	system
such	as	the	GUI	Configuration	Utility,	tmsh	CLI,	DNS	client,	SNMP	and
NTP.	The	HMS	also	contains	an	SSL	stack	(known	as	the	COMPAT
stack):	OpenSSL,	which	can	also	be	used	by	TMM	where	necessary.

	
Local	Traffic	Manager	(LTM);	this	and	other	‘feature’	modules	such	as
APM,	ASM	and	GTM	expose	specific	parts	of	TMM	functionality	when
licensed.	They	are	typically	focussed	on	a	particular	type	of	service	(load
balancing,	authentication	and	so	on).

	
AOM;	lights	out	system	management	accessible	through	the	management
network	interface	and	serial	console.

	
Maintenance	Operating	System	(MOS);	disk	management,	file	system
mounting	and	maintenance.

	
End	User	Diagnostics	(EUD);	performs	BIG-IP	hardware	tests.

	

2.										The	Application	Delivery	Fundamentals
Exam

	

The	Application	Delivery	Fundamentals	exam	is	the	first	within	the	F5
Professional	Certification	Program	and	is	based	on	TMOS	v11.4.	Passing	this
exam	is	a	prerequisite	for	the	TMOS	Administrator	certification	which	is	itself	a
prerequisite	for	all	further	certifications	and	exams.
	
In	this	chapter	we’ll	discuss	the	wider	Professional	Certification	Program	and
detail	additional	resources	that	you	might	find	useful	as	you	work	through	this
guide	and	plan	for	the	exam.

	

The	F5	Professional	Certification	Program
	

The	F5	Professional	Certification	Program	(F5-PCP),	as	it	is	now	known,	has
been	undergoing	radical	transformation	since	the	second	half	of	2012.	Prior	to
this	transformation,	there	were	a	limited	set	of	exam	subjects	at	two	certification
levels.
	
With	the	new	program	there	are	now	five	levels	of	certification	and	six	levels	of
exams	or	labs	(there's	a	difference	as	the	first	level	exam	(covered	by	this	book)
does	not	result	in	any	certification	or	credential	award.)	The	first	three	of	the
exam	levels	(two	certification	levels)	are	shown	in	the	following	table	(the
higher	levels	are	still	under	development);

	
Exam
Level

Exam	Name Certification
Level

Skillset

101 Application	Delivery
Fundamentals None

Basic	network,
protocol	and	ADC
concepts	and
operation,	TMOS
architecture	and
modules.

201 TMOS	Administrator

C1:
F5	Certified	BIG-
IP	Administrator
(F5-CA)

Basic
troubleshooting,
day	to	day
maintenance	and
management	of
devices	and
configuration
objects.

301a
301b

LTM	Specialist	a
LTM	Specialist	b

C2:
F5	Certified
Technology
Specialist	(F5-
CTS)											

Architect,	Setup,
Deploy
Maintain	and
Troubleshoot

302 GTM	Specialist

C2:
F5	Certified
Technology
Specialist	(F5-
CTS)											

DNS
administration,
GSLB,	multiple
data	centres,
configuration	and
administration

303 ASM	Specialist

C2:
F5	Certified
Technology
Specialist	(F5-
CTS)											

Web	application
security	and
operation,
configuration	and
administration

304 APM	Specialist

C2:
F5	Certified
Technology
Specialist	(F5-
CTS)											

RAS,	AAA,
configuration	and
administration

	
In	case	you’re	wondering	why	this	exam	doesn’t	result	in	a	certification;	this	is
designed	to	encourage	greater	candidate	commitment	and	deter	‘casual’
candidates	who	might	normally	take	an	‘easy’	entry	level	exam	simply	to	bulk
out	their	CV.	This,	along	with	the	wider	network,	protocol	and	application
knowledge	requirements	increase	the	value	and	quality	of	the	program	and
hopefully	reduce	the	likelihood	of	accelerated	training	programs	being
formulated.
	
Further	information	on	the	PCP	can	be	found	here:
https://www.f5.com/services/certification/faqs.html.
	
Why	Become	Certified?
	

Before	embarking	on	any	certification	path,	this	is	a	worthwhile	question	to	ask
of	yourself.	There	are	many	benefits	to	certification	(and	debate	on	the	entire
subject)	but	most	of	them	must	be	qualified	based	on	factors	such	as;	which
vendor,	the	program’s	reputation,	the	employment	market,	employer	attitudes,
certification	relevance	and	more.	Remember	that	most	vendors	will	make	money

https://www.f5.com/services/certification/faqs.html

from	a	certification	program	regardless	of	its	benefits	or	value	to	you.	Also	keep
in	mind	that	a	certification	doesn’t	prove	you	are	competent.	Here	my	view	on
the	typical	benefits;

Certification	involves	study,	learning	and	the	acquisition	of	knowledge	–
these	are	all	good	things	but	remember	you’ll	learn	and	benefit	more	if	you
go	for	something	that	isn’t	an	everyday	part	of	your	job.	It’s	still	of	benefit
to	certify	in	skills	you	already	possess	and	this	will	help	fill	any	gaps	in
your	knowledge,	but	studying	something	outside	of	your	everyday	will	be
more	rewarding	and	hopefully	open	more	avenues	of	opportunity	in	the
future,	especially	if	you	chose	something	in	demand	or	likely	to	be	soon.

	
Certification	will	improve	your	understanding,	knowledge	and	self-
confidence.

	
Certification	proves	to	others	you	can	study,	read,	take	notes,	work	alone,
follow	through,	do	research	and	organise	yourself	in	general	–	assuming	it
hasn’t	taken	too	long	to	achieve	isn’t	considered	an	easy	certification.
	
Certification	can	help	you	keep	your	job,	gain	a	pay	rise	or	a	promotion
although	what	you	choose	and	it’s	perceived	value	will	be	critical	here.
	
	
Certification	gives	you	an	advantage	over	other	candidates	without	it
although,	again,	what	you	choose	and	it’s	perceived	value	will	be	critical.
	

	
Choosing	a	Certification
	
All	of	the	benefits	detailed	previously	will	vary	in	‘weight’	depending	on	the
certification	program	(or	programs)	you	chose	to	embark	on.	When	deciding,
you	should	consider	the	following;

Forget	the	vendor;	will	you	learn	something	useful	about	technology?
	

Does	the	certification	carry	any	weight	in	the	market,	how	is	it	perceived

by	employers/hirers?
	

Do	too	many	people	have	it?
	

Is	this	certification	alone	good	enough	to	achieve	your	goals?
	

Is	there	demand	for	the	certified	skills?
	

What	benefits	of	certification	does	the	vendor	supply,	if	any?
	

Getting	Started/First	Steps
	
If	you	haven’t	already,	you	should	take	a	quick	look	at	the	certification	pages	on
the	F5	website	that	can	be	found	here:
https://www.f5.com/education/certification/.	Along	with	the	overview	provided
at	the	start	of	this	chapter	this	should	tell	you	all	you	need	to	know	about	the
certification	program.	Should	you	be	really	stuck,	you	can	always	email	the	F5-
PCP	team	at:	f5certification@f5.com.
	

Next,	we’d	suggest	you	register	for	an	F5.com	account	here:
https://login.f5.com/resource/registerEmail.jsp	which	will	give	you	access	to	a
number	of	resources	exclusive	to	registered	users.
	
A	DevCentral	account	will	also	likely	be	very	useful	and	provides	access	to	F5’s
community	support	and	documentation	site.	Register	here:
https://devcentral.f5.com/register.

	
Then,	before	you	can	even	think	about	booking	an	exam,	you	are	required	to
register	with	the	F5	Credential	Management	System	(CMS)	and	complete	the
various	agreements	found	there	–	you	can’t	sit	an	F5	exam	otherwise.	The	CMS
also	provides	program	updates	and	some	useful	downloads;	you	can	find	it	here.
This	account	is	entirely	separate	to	an	F5.com	and	DevCentral	account.

	
Finally,	once	you’ve	confirmed	you	are	eligible	to	take	an	exam,	you’ll	need	one
more	account,	this	one	with	Pearson	VUE,	F5s	examination	provider.	When
you’re	ready	to	sit	this	exam	(or	any	other)	you’ll	need	to	book	it	through
Pearson	VUE	here:	https://www2.pearsonvue.com/f5/.

	

Taking	Exams
	

As	already	mentioned,	you	must	register	with	the	F5	CMS	in	order	to	be	eligible

https://www.f5.com/education/certification/
mailto:f5certification@f5.com
https://login.f5.com/resource/registerEmail.jsp
https://devcentral.f5.com/register
https://i7lp.integral7.com/durango/do/login?ownername=F5&channel=F5&basechannel=integral7
https://www2.pearsonvue.com/f5/

to	take	this	exam	and	book	it	through	Pearson	VUE.
	

The	number	of	questions,	time	allowed,	and	passing	score	are	provided	when
you	book	the	exam,	however,	there	are	normally	70	questions	over	90	minutes
with	a	required	passing	score	of	69%.	All	questions	are	scored	equally.
	

Exams	are	typically	$135	USD	in	the	Americas,	$145	USD	in	EMEA,	and	$155
USD	in	APAC.
	

You	must	wait	at	least	15	days	before	you	can	retake	a	failed	exam	the	first	time,
30	days	the	second	time,	45	days	the	third	time	and	finally	730	days	the	fourth
time.	You	have	to	wait	730	days	before	you	can	attempt	an	exam	for	the	fifth
time	to	decrease	the	possibility	of	cheating	and	question	recording.	The	extended
delay	ensures	you	face	a	rewritten	exam	as	exams	are	updated	every	two	years.
	
Certifications	expire	after	two	years;	re-certifying	your	highest	certification
achieved	recertifies	all	lower	level	certifications,	as	is	the	norm	for	most
certification	programs.
	
Note	that	F5	Training	courses	only	cover	the	F5-specific	elements	of	each	exam
as	you	are	expected	to	already	have	(or	gain)	knowledge	and	experience	of
general	networking	and	network	and	application	protocols.	Don’t	worry,	this
book,	of	course,	covers	everything.
	

Additional	Resources
	

The	following	will	be	of	particular	interest	to	students	studying	for	this	exam;
	

AskF5
	
Available	at:	https://support.f5.com/	(previously	https://ask.f5.com/	which	still
works	too)	AskF5	is	the	F5	Networks	technical	knowledge	base	and	self-service
online	support	site	–	no	account	is	required.

	
AskF5	provides	knowledge	base	articles	related	to;	support,	known	issues,
solutions,	best	practises	and	security	advisories.	You	can	also	obtain	release
notes,	manuals	and	guides.

	

DevCentral
	

F5	DevCentral	(DC),	available	here:	https://devcentral.f5.com/	is	a	community
website	featuring	forums,	blogs,	tech	tips,	wikis,	code	sharing	for	iRules,
iControl,	iApps	templates,	tutorials	and	more.	An	account	is	required	to	access
some	content	or	contribute.
	

Created	as	CodeShare	in	2003	by	Joe	Pruitt,	the	architect	of	iControl	(Joe	is	still
with	the	company)	DevCentral	now	has	over	130,000	members	in	191	countries.
Membership	grew	over	25%	in	2012	alone.
	

F5	University
	
Free,	self-paced	web-based	training	related	to	basic	technologies	and	concepts,
changes	in	new	software	versions	and	basic	LTM	configuration	are	available	via
the	F5	University	available	here:	https://university.f5.com/.	An	F5.com	account
is	required	to	access	the	site.

https://support.f5.com/
https://ask.f5.com/
https://devcentral.f5.com/
https://university.f5.com/

	
You	can	also	gain	lab	access	to	an	F5	running	TMOS	v11.4.0	(plus	two	Linux
hosts)	for	two	hours	at	a	time;	an	invaluable	tool	for	those	without	access	to	their
own	device.

	

Exam	Blueprints
	
These	can	be	found	on	the	F5.com	website	and	in	the	Downloads	section	of	the
CMS	and	provide	a	comprehensive	list	of	the	exam	objectives	and	the	skills	and
knowledge	required	to	pass	the	exam.	The	blueprint	for	this	exam	has	already
been	detailed	in	this	book	but	can	also	be	found	here:
https://www.f5.com/pdf/certification/exams/blueprint-app-delivery-
fundamentals-exam.pdf.
	

BIG-IP	LTM	Virtual	Edition	(VE)	Trial
	

An	LTM	VE	90	Day	Trial	can	be	obtained	from	here:	https://www.f5.com/trial/	-
you’ll	need	an	F5.com	account	to	obtain	it.	You’ve	probably	already	got	one
right	and	if	not,	it’ll	be	useful	going	forward.	Prior	to	April	2014	you	could	only
trial	v10.1	but	that	has	now	changed	to	v11.3.0	which	is	great,	but	for	the
purposes	of	this	exam	either	is	good	enough	for	you	to	get	your	hands	on	the
product	and	have	a	look	around.	Don’t	think	it’s	an	essential	requirement;	the
101	exam	doesn’t	require	any	practical	knowledge	of	actually	using	or
configuring	BIG-IP.
	

BIG-IP	VE	Lab	Edition
	
You	can	now	purchase	the	latest	BIG-IP	VE	Lab	Edition	for	the	very,	very
cheap	price	of	$95	(it	used	to	be	around	$2000).	It’s	limited	to	10Mb	total
throughput	but	includes	LTM,	GTM,	APM	(10	user	limit)	AFM,	ASM,	AVR,
PSM,	WAM	and	WOM.	It’s	an	incredibly	cost	effective	tool	for	getting	hands
on	experience	using	F5s	products,	testing	and	building	an	understanding	of	how
things	work	and	interact.	As	mentioned	in	the	previous	section,	don’t	think	it’s

https://www.f5.com/pdf/certification/exams/blueprint-app-delivery-fundamentals-exam.pdf
https://www.f5.com/trial/

an	essential	requirement;	the	101	exam	doesn’t	require	any	practical	knowledge
of	actually	using	or	configuring	BIG-IP.	Only	the	2xx	and	3xx	exams	do.
	

BIG-IP	VE	on	Amazon	Web	Services	(AWS)
	

It	takes	more	time,	effort	and	research	to	get	started	but	I	can	highly	recommend
AWS	as	an	alternative	to	the	VE	Trial	and	Lab	Editions,	especially	if	you	don’t
have	a	lab	server	or	powerful	PC/laptop	with	the	right	software.	As	an	added
benefit	you	also	get	to	learn	about	and	gain	practical	experience	with	AWS	(and
the	cloud)	itself.
	
The	recently	introduced	Free	Usage	Tier	(details	here:
https://aws.amazon.com/free/)	makes	building	a	small,	private	lab	environment
very	cheap.	You	can	create	a	Virtual	Private	Cloud	(VPC)	and	a	number	of	EC2
Linux	server	‘micro	instances’	for	purposes	such	as	running	a	web	server	or
other	services,	all	for	free.

	
Then	you	just	need	to	add	an	LTM	VE	EC2	instance.	It	isn’t	free	but	you	can
create	and	run	one,	charged	hourly,	with	any	of	the	Good,	Better	or	Best	license
bundles,	at	a	very	low	cost.	Those	costs	are	constantly	changing	and	depend	on	a
number	of	factors	(including	taxes)	but	to	give	you	an	example,	I	can	run	a	VE
with	the	Good	license	for	around	$0.50	an	hour.	You	only	need	to	run	your
instances	(and	thus	only	get	charged)	as	and	when	you	need	to.

	
Of	course,	there	is	a	steep	learning	curve	to	overcome	and	it’s	probably	not
worth	tackling	for	the	purposes	of	this	exam	but	particularly	if	you	plan	on
pursuing	the	higher	level	certifications	it’s	something	I’d	recommend	you	do	at
some	point.

	

https://aws.amazon.com/free/

3.										The	OSI	Reference	Model
	

Understanding	the	Open	System	Interconnection	reference	model	is	critical	to
those	working	in	the	networking	field.	It	was	published	by	the	International
Organization	for	Standardization	(ISO)	in	1984	and	was	originally	intended	to
be	the	basis	for	the	implementation	of	a	new	network	protocol	stack,	most	of
which	never	materialized.
	

The	model	consists	of	seven	logical	layers,	each	of	which	describes	one	or	more
functions	that,	when	combined	as	a	whole,	represent	a	fully	featured	network
environment	(or	system)	capable	of	providing	everything	needed	for	two	or
more	hosts	to	communicate	with	each	other.
	

So,	why	is	this	old,	seemingly	unused	network	model	still	around?	Well,
logically	dividing	network	functions	in	this	way	provides	an	abstraction	useful
for	a	few	reasons;
	

It	eases	learning;	rather	than	attempting	to	tackle	the	subject	of	networking
as	a	whole,	the	functions	of	each	layer,	from	the	lowest	to	the	highest	can
be	taught	and	understood	one	at	a	time

	
The	same	benefit	applies	when	discussing,	designing	and	implementing
networks;	each	layer	can	be	dealt	with	(or	perhaps	ignored)	as	necessary,
one	at	a	time

	
Again,	this	benefit	of	segregation	and	layer	‘independence’	also	applies	to
network	hardware	and	software	development	and	protocol	design

	
Changes	to	or	the	introduction	of	additional	functionality	at	one	layer	does
not	require	change	in	the	other	layers	(although	in	reality	that’s	not	always
the	case)

	
Of	course,	the	reality	of	this	conceptual,	theoretical	model	is	not	as	simple	as	it
may	seem.	The	layers	of	the	model	are	not	entirely	independent	as	most	layers
rely	on	functions	provided	by	the	layer	underneath	and	provide	functions	to	the
layer	above.	Some	are	very	tightly	coupled	and	cannot	be	dealt	with	as
independent	entities	in	any	practical	way.

	
The	model’s	structure	and	layers,	each	layer’s	functions	and	the	actual	real-
world	protocols	that	provide	them	are	displayed	in	the	following	diagram;

	

	
Please	keep	in	mind	at	this	point	that	this	is	a	theoretical	model	(and	also	not	the
only	one)	and	each	layer	represents	a	set	of	functions,	not	an	actual	protocol	or

standard.	In	the	real	world	(as	we’ll	see	later)	the	data	link	functions	can	be
performed	by	Ethernet	for	instance,	the	network	functions	by	IP.	Neither
Ethernet	nor	IP	are	OSI	compliant	protocols	or	an	official	part	of	the	OSI	model;
they	simply	perform	functions	that	are	described	by	layers	two	and	three.
	

When	sending	data	from	one	host	system	to	another,	it	is	processed	by	the	top
layer	(the	application	layer)	on	the	sending	host	and	then	every	other	layer	down
to	the	bottom	layer	(the	physical	layer).	Each	layer	adds	information	to	and/or
transforms	the	data	as	necessary	as	it	performs	its	functions;	this	is	known	as
encapsulation.	The	physical	layer	actually	translates	the	data	into	electrical
signals	that	are	transmitted	to	the	receiving	host.
	

Following	is	a	table	detailing	some	of	the	different	PDU	encapsulation	names
used	depending	on	the	protocol	and	OSI	model	layer	involved;
	

	

OSI	model: Protocol: Protocol	data	units:
Data-Link Ethernet Frame
Network Internet	Protocol Datagram
Transport User	Datagram	Protocol Datagram
Transport Transmission	Control

Protocol
Segment

Application Various													 Message

	 	

	

	

	

The	receiving	host	then	does	the	reverse	as	the	data	passes	from	the	lowest	layer
to	the	highest.	The	previously	added	(by	the	sending	host)	encapsulation	data	is
used	as	required	at	each	layer	and	then	removed	as	the	data	is	passed	up	to	the
next.
	

We’ll	only	cover	the	physical,	data	link,	network,	transport	and	application
layers	in	greater	detail	in	the	following	chapters	as	they	are	the	most	common
ones	you’ll	come	into	contact	with	and	knowledge	of	them	is	essential	for	the
exam.

	

Layer	1	–	Physical	Layer
This	is	the	simplest	layer	(in	theory	at	least);	it	defines	the	specification	of	the
cables	and	other	physical	(and	wireless)	network	mediums,	the	connectors,
signaling	and	other	parameters.	Some	examples	of	mediums	are	coaxial	cable,
twisted-pair	copper	cables	and	fiber	optic	cables	(which	use	light	rather	than
electrical	signals).

	
The	following	table	describes	the	different	functions	of	the	physical	layer;

	

Function Description
Data	Encoding This	modifies	the	binary	values	(digital	signal)	that

are	used	by	the	host	to	suit	the	physical	medium
and	also	how	the	receiving	host	detects	when	a
transmission	begins.

Physical	Medium
Attachment

This	describes	the	physical	medium’s	cabling,	for
example	how	many	pins	the	connector	has	and
which	pin	does	what.	For	example,	which	pin	will
receive	data	and	which	will	send	it.

Transmission
Technologies

There	are	two	types	of	transmission	technologies
that	can	be	used	to	transfer	data,	baseband	(digital)
or	broadband	(analog).	This	function	determines
which	technology	is	used	and	how.

Physical	Medium
Transmission

This	function	defines	the	specification	of	the
physical	medium	used	(even	wireless	uses	a
physical	radio	interface).	It	determines	how	many
volts	should	represent	a	certain	signal	state	based
on	which	physical	medium	is	used.

	

Layer	2	–	The	Data	Link	Layer
Data	link	layer	protocols	are	responsible	for	transferring	data	between	hosts
connected	to	the	same	network	medium	(two	hosts	on	the	same	wireless	SSID	or
connected	to	the	same	hub	for	instance).	One	of	its	many	functions	(in	most
cases)	is	to	make	sure	that	data	is	transmitted	without	error	and	collisions	are
detected	and	recovered	from.

	

Note								The	data	link	layer	is	only	concerned	with
communications	between	hosts	connected	to	the	same	physical
network.	Communications	between	different	networks	are	handled
by	protocols	and	mechanisms	operating	above	layer	2.
	

	

At	the	data	link	layer	we	use	the	term	frames	to	refer	to	the	protocol	data	unit
(PDU)	which	is	created	by	encapsulating	the	network	layer	packet	with	a	header
and	trailer	containing	necessary	layer	two	information.
	

Here’s	a	detailed	description	of	common	data	link	functions;
	

Function Description
Identification	of	the
Network	Layer
Protocol

The	data	link	layer	protocol	header	includes	a	code
that	specifies	which	network	layer	protocol	is
encapsulated	within	the	frame.	This	helps	the
receiving	system	to	determine	which	protocol	to
pass	the	encapsulated	data	to	when	it	needs	to	be
sent	to	the	network	layer.

Error	Detection The	sending	host	runs	the	frame	through	a	cyclical
redundancy	check	(CRC)	calculation	on	the	data
that	the	frame	contains	and	adds	the	result	to	the
frame.	When	the	frame	arrives	at	the	receiving	end,
it	can	perform	the	same	CRC	check	and	determine
if	the	transfer	has	been	successful,	without	any
errors.

Addressing Both	the	data	link	and	network	layers	have
addresses	but	there	is	a	huge	difference	between
them.	Data	link	layer	addresses	are	known	as
hardware	addresses	and	are	used	to	transfer	data
within	the	local	network.	The	address	is	expressed
in	hexadecimal	and	is	6	bytes	(or	48	bits)	long.

	
You	can	find	the	current	list	of	MAC	addresses	and	their	allocations	to	vendors
(known	as	Organizationally	Unique	Identifiers	(OUIs))	at:
https://standards.ieee.org/develop/regauth/oui/public.html.	You	can	use	this	page
to	search	for	a	MAC	address	and	see	which	vendor	it	belongs	to.
	

https://standards.ieee.org/develop/regauth/oui/public.html

Layer	3	–	The	Network	Layer
Network	layer	protocols	are	responsible	for	end-to-end	communications	between
two	hosts	regardless	of	where	they	reside	in	relation	to	the	physical	network
medium	(unlike	the	data	link	layer	which	is	only	significant	within	the	local
network).	Network	layer	protocols	are	unaware	of	the	physical	network	medium
and	the	path(s)	between	two	hosts	and	rely	on	layer	two	protocols	for	delivery
across	physical	networks.

	
The	network	layer	uses	addresses	that	are	significant	between	and	across
multiple	networks	and	that	are	not	tied	to	a	physical	device	in	any	way.	A	host
can	also	have	multiple	network	layer	addresses.	With	the	most	common	layer
three	protocol	Internet	Protocol	(IP),	addresses	only	change	if	Network	Address
Translation	(NAT)	is	used	to	specifically	do	so	(we’ll	discuss	this	later	in
chapter	7).

	
To	help	further	clarify	the	difference	between	layer	two	and	three,	remember	that
a	layer	two	MAC	address	is	tied	to	a	physical	host	whereas	a	network	layer
address,	such	as	an	IP	address,	can	be	assigned	to	and	easily	changed	on	any
host.

	

Layer	4	–	The	Transport	Layer
The	major	functions	of	transport	layer	protocols	can	include	(not	necessarily	in
combination);	flow	control,	reliability,	multiplexing,	connection-oriented
communications	and	congestion	avoidance.	The	most	common	real-world
protocols	used	at	this	layer	are	TCP	(Transmission	Control	Protocol)	and	UDP
(User	Datagram	Protocol)	but	there	are	many	others.

	
Connection-Oriented	and	Connectionless

The	major	difference	between	the	TCP	and	UDP	protocols	is	that	TCP	is
connection-oriented	and	UDP	is	not	(its	connectionless,	the	complete	opposite).
A	Connection-Oriented	protocol	ensures	that	two	hosts	establish	and	agree	a
connection	before	transmitting	any	data	between	them;	this	process	is	called	the
“Three-Way-Handshake”	where	TCP	is	used.	TCP	also	makes	sure	that	if	any
packets	are	lost	or	dropped	in	transmission	they	are	re-sent	and	also	performs
error	checking.
	

A	connectionless	protocol	like	UDP	doesn’t	perform	error	checking	or	guarantee
data	is	delivered.	However,	in	return	for	these	apparent	drawbacks,	in	some
scenarios	it	provides	one	major	benefit:	better	performance.
	

TCP	is	appropriate	when	you	need	to	ensure	the	quality	of	the	data	that	you
receive.	This	could	involve,	for	instance,	an	email,	a	webpage	or	a	file.	If	you
receive	a	file	that	is	missing	data	it	will	be	completely	unusable.	You	probably
think	that	this	should	be	the	case	for	all	data	transmissions	but	there	are
scenarios	where	speed	is	preferable	and	data	loss	can	be	tolerated.
	
Services	that	benefit	from	using	a	connection-less	protocol	like	this	include
voice,	video	streaming	services	and	DNS.	With	DNS	all	you	really	want	is	a
simple	answer	and	if	the	DNS	server	does	not	reply	you	can	just	resend	the	DNS
query	again	very	quickly.	With	voice	and	streaming	services	current	data	is	more
valuable	than	correct	and	complete	data.	For	example,	if	you	are	watching	a
soccer	game	online	and	a	packet	gets	corrupted	or	lost	on	the	way	to	you	it	is
pointless	resending	it.	The	data	it	contains	is	no	longer	relevant;	it	contains

‘stale’	information	from	the	past	and	there	is	no	point	in	displaying	old	data	on	a
live	streaming	service.
	

	
TCP	Packet	Segmentation

	
When	an	application	generates	data	that	is	going	to	be	transferred	over	the
network,	the	application	does	not	consider	that	the	data	may	be	too	large	for	the
network.	The	TCP	protocol	is	responsible	for	splitting	up	the	original	data	into
several	smaller	pieces	in	order	to	successfully	transmit	it	over	the	network.	The
protocol	assigns	numbers	to	each	segment	that	is	about	to	get	transferred	and
keeps	track	of	them	in	order	for	the	recipient	to	reassemble	the	data	once	it	has
received	all	of	the	packets.

	

TCP	Segmentation	can	be	quite	CPU	intensive	and	is	often	offloaded	to	a
network	interface	card;	a	feature	known	as	TCP	Segmentation	Offload	(TSO)	or
Large	Segment	Offload	(LSO).

	

Layer	5	–	The	Session	Layer
As	a	network	technician,	the	layers	you	will	come	into	least	contact	with	are	the
session	layer	and	the	presentation	layer,	which	is	why	we	will	not	explore	these
layers	in	any	detail.

	
The	session	layer	is	the	first	layer	where	efficient	transmissions	over	the	network
are	not	considered.	Functions	such	as	addressing,	routing	and	error	correction
are	all	managed	by	the	lower	layers.

	
The	session	layer	is	concerned	with	how	hosts	exchange	their	data	which	is
called	dialog	and	maintain	a	healthy	exchange	between	the	two	systems	which	is
much	more	difficult	than	it	may	seem.	Requests	and	replies	may	cross	each	other
on	their	way	to	the	recipient	that	can	cause	errors	in	communication	and	protocol
operation.

	

Layer	6	–	The	Presentation	Layer
This	is	the	simplest	layer	of	them	all.	In	most	cases	the	presentation	layer	acts	as
a	pass-through	connecting	the	session	layer	with	the	application	layer.	The
application	layer	accesses	the	session	layer	by	sending	the	request	to	the
presentation	layer.	It	will	then	pass	it	on	to	the	correct	session	layer	function.

	
The	presentation	layer	also	translates	the	various	data	syntaxes	between	layers;
this	enables	functions	like	compression	and	encryption.	The	translation	occurs	in
two	stages,	the	abstract	syntax	and	the	transfer	syntax.	The	sending	host
translates	the	data	from	the	abstract	syntax	into	the	transfer	syntax	and	the
receiving	system	translates	the	transfer	syntax	back	into	the	abstract	syntax.
After	that	it	is	passed	on	to	the	application	layer.

	

Layer	7	–	The	Application	Layer
The	application	layer	is	often	confused	with	the	actual	software	application	that
users	run	on	their	computer.	This	is	not	the	case;	all	the	software	applications
that	a	computer	runs	have	a	corresponding	service	(or	protocol)	which	is	called
when	the	application	wants	to	transfer	data.

	
For	instance,	if	you	use	a	web	browser	and	want	to	visit	a	website	the	web
browser	calls	the	HTTP	service	so	it	can	pass	its	request	and	data	to	it.	The
HTTP	service	will	then	perform	its	functions	and	pass	the	(possibly	modified)
encapsulated	data	to	the	layer	below,	the	presentation	layer.	This	process	is
repeated	at	each	layer	until	the	data	is	finally	transmitted	onto	the	network	to	the
destination	web	server.

	
Some	of	the	most	common	protocols	that	operate	at	layer	seven	are;

	
HTTP	–	Hyper	Text	Transfer	Protocol
	
SMTP	–	Simple	Mail	Transfer	Protocol
	
DNS	–	Domain	Name	System
	
FTP	–	File	Transfer	Protocol
	
SSH	–	Secure	Shell

	
	

Chapter	Summary
The	OSI	reference	model	consists	of	seven	logical	layers,	each	of	which
describes	one	or	more	functions	that,	when	combined	as	a	whole,	represent
a	fully	featured	network	environment	(or	system)	capable	of	providing
everything	needed	for	two	or	more	hosts	to	communicate	with	each	other.
	
The	Physical	Layer	defines	the	specification	of	the	cables	and	other
physical	(and	wireless)	network	mediums,	the	connectors,	signaling	and
other	parameters.
	
The	Data	link	layer	protocols	are	responsible	for	transferring	data	between
hosts	connected	to	the	same	network	medium	(two	hosts	on	the	same
wireless	SSID	or	connected	to	the	same	hub	for	instance).
	
The	Network	layer	protocols	are	responsible	for	end-to-end
communications	between	two	hosts	regardless	of	where	they	reside	in
relation	to	the	physical	network	medium	(unlike	the	data	link	layer	which
is	only	significant	within	the	local	network).
	
The	major	functions	of	transport	layer	protocols	can	include	flow	control,
reliability,	multiplexing,	connection-oriented	communications	and
congestion	avoidance.	The	most	common	real-world	protocols	used	at	this
layer	are	TCP	(Transmission	Control	Protocol)	and	UDP	(User	Datagram
Protocol)	but	there	are	many	others.

	

Chapter	Review
In	order	to	test	your	knowledge	and	understanding	of	this	chapter,	please	answer
the	following	questions.	You	will	find	the	answers	and	explanations	of	the
questions	at	the	end	of	this	chapter.

1.	 What	OSI	model	layer	is	responsible	for	logical	addressing,	routing	and
end-to-end	communication?

	

a.	 The	Network	Layer
	

b.	 The	Data	Link	Layer
	

c.	 The	Session	Layer
	

d.	 The	Application	Layer
	

2.	 What	Protocol	data	unit	is	used	in	the	Data	Link	layer?
	

a.	 Segment
	

b.	 Message
	

c.	 Frame
	

d.	 Datagram
	
3.	 Is	the	TCP	protocol	Connectionless	or	Connection-Oriented?

	
a.	 Connection-Oriented

	
b.	 Connectionless

	
4.	 Can	the	UDP	protocol	guarantee	that	the	traffic	sent,	reaches	the

destination	and	is	in	good	health?

	

a.	 Yes
	

b.	 No

Chapter	Review:	Answers
You	will	find	the	answers	to	the	chapter	review	questions	below:

1.	 The	correct	answer	is:	A
	

a.	 The	Network	Layer
	

b.	 The	Data	Link	Layer
	

c.	 The	Session	Layer
	

d.	 The	Application	Layer
	

	
2.	 The	correct	answer	is:	C

	
a.	 Segment

	
b.	 Message

	
c.	 Frame

	
d.	 Datagram

	

3.	 The	correct	answer	is:	A
	

a.	 Connection-Oriented
	

b.	 Connectionless
	

The	major	difference	between	the	TCP	and	UDP	protocols	is	that	TCP	is
connection-oriented	and	UDP	is	not	(its	connectionless,	the	complete	opposite).

A	Connection-Oriented	protocol	ensures	that	two	hosts	establish	and	agree	a
connection	before	transmitting	any	data	between	them;	this	process	is	called	the
“Three-Way-Handshake”	where	TCP	is	used.
	

	
4.	 The	correct	answer	is:	B

	
a.	 Yes

	
b.	 No

	

A	connectionless	protocol	like	UDP	doesn’t	perform	error	checking	or	guarantee
data	is	delivered.	However,	in	return	for	these	apparent	drawbacks,	in	some
scenarios	it	provides	one	major	benefit:	better	performance.

4.										The	Data	Link	Layer	in	Detail
	

In	order	to	communicate	with	other	devices	on	the	same	network	you	need	an
address	to	identify	each	device	on	the	physical	network.	This	is	one	of	the	core
functions	of	the	Data	Link	Layer.	It	is	responsible	for	identifying	the	host’s
physical	address	on	the	network	using	what	is	known	as	a	Media	Access	Control
(MAC)	address.	This	addressing	scheme	is	also	called	Ethernet	Addressing.	
	

The	data	link	layer	can	be	subdivided	into	two	layers,	the	Media	Access	Control
(MAC)	Layer	and	the	Logical	Link	Control	(LLC)	layer.	The	LLC	is	responsible
for	frame	synchronization	and	provides	a	degree	of	error	checking.	In	the	Data
Link	Layer	you	find	many	different	technologies	that	have	a	special	purpose;
these	include	Address	Resolution	Protocol	and	VLANs,	which	we’ll	cover
shortly.
	

The	header	(and	trailer)	fields	added	to	encapsulate	the	data	(the	variable	length
layer	3	payload)	are	as	follows;

Destination	MAC	Address	–	six	Bytes
	
Source	MAC	Address	–	six	Bytes
	
An	optional	802.1Q	tag	if	VLAN	tagging	is	used	–	four	Bytes
	
Length	of	the	frame	–	two	Bytes
	
Frame	check	sequence	–	four	Bytes

	

	

We’ll	explore	the	purpose	of	some	of	these	headers	over	the	course	of	this
chapter.

	

Ethernet	Access	Method	CSMA/CD
Have	you	ever	been	to	an	event	or	party	with	a	lot	of	people	and	everyone	is
talking	loudly	and	over	the	top	of	each	other	and	you	are	trying	to	make	sense
out	of	what	everyone	is	saying?	This	was	an	issue	during	the	early	days	of
network	computing	since	hosts	on	a	network	shared	the	same	medium	and	would
frequently	transmit	at	the	same	time	as	each	other,	causing	collisions.	With	an
increased	numbers	of	hosts	on	the	network	this	problem	only	got	worse.	In	order
to	tackle	this	Carrier	Sense	Multiple	Access	/	Collision	Detection	(CSMA/CD)
was	invented.	CSMA/CD	was	developed	by	Robert	Metcalfe	and	Dave	Boggs
together	with	their	team	at	Xerox	Palo	Alto	in	1973.	Initially	it	was	used	on	the
network	connecting	the	islands	of	Hawaii,	called	ALOHAnet.

	
In	1980	the	Institute	of	Electrical	and	Electronics	Engineers	(IEEE)	began	work
on	an	international	standard	to	define	Ethernet	networks.	CSMA/CD	Is	one	of
the	technologies	that	was	eventually	included	and	standardized	in	1985’s	IEEE
published	standard	called	“IEEE	802.3	Carrier	Sense	Multiple	Access	with
Collision	Detected	(CSMA/CD)”.	To	fully	understand	CSMA/CD,	let’s	break	it
down	and	analyze	each	component	in	turn.

	

Carrier	Sense	Multiple	Access
When	a	host	needs	to	send	out	frames	on	an	Ethernet	interface,	it	always	begins
by	listening	on	the	interface	and	sensing	if	there	is	any	traffic	being	transmitted;
this	is	carrier	sense.		This	is	necessary	as	each	host	on	the	network	shares	the
same	medium;	this	is	multiple	access.	If	it	turns	out	that	the	network	is	busy,	the
host	waits	for	a	random	period	of	time	and	then	listens	again.	This	is	to	prevent	a
collision	from	occurring.		A	host	will	not	transmit	until	the	network	is	idle.

	

Collision	Detection
The	most	essential	part	of	CSMA/CD	is	the	collision	detection	phase.	Without	it,
hosts	on	a	network	could	not	detect	that	there	has	been	a	collision	and	the	hosts
could	receive	corrupted	data.
	
With	collision	detection,	when	a	collision	occurs	the	sending	hosts	detect	it,

immediately	stop	sending	data	and	sends	out	a	jam	signal	to	alert	other	hosts	on
the	network	that	a	collision	has	taken	place.	When	a	receiving	host	gets	the	jam
signal	it	drops	all	partial	frames	it	has	received.	After	a	host	has	transmitted	the
jam	signal	it	waits	for	a	random	period	of	time	before	attempting	to	retransmit
any	data	(and	repeats	the	carrier	sense	phase).	This	is	sometimes	called	a	back
off	period.	Both	hosts	involved	in	the	collision	have	their	own	random	time	to
wait	before	attempting	to	send	the	data	again.
	

Note								Almost	all	of	the	prior	CSMA/CD	information	is	no
longer	relevant	in	today’s	switched	networks.	But	it	is	still
necessary	to	know	how	the	technology	has	evolved	over	the	years.
Hopefully	you	can	appreciate	how	much	better	things	are	today.
	

	
In	the	following	diagram	you	can	see	CSMA/CD	in	action;

	
1.	 Host	A	is	trying	to	send	data	to	Host	C	but	the	transmitted	signals	haven’t

reached	Host	D	when	it	starts	listening	on	its	interface.	At	the	same	time
Host	D	is	trying	to	send	data	to	Host	B.	Therefore	both	Host	A	and	Host	B
are	transmitting	at	the	same	time,	causing	a	collision.
	

2.	 When	the	hosts	detect	a	collision,	a	jam	signal	is	sent	out	on	the	network	to
inform	everyone	that	a	collision	has	occurred.
	

3.	 Thereafter,	both	transmitting	hosts	wait	for	a	random	period	of	time	and
starts	listening	on	the	network	again.
	

4.	 The	host	who	firsts	starts	to	listen	on	the	network	and	detects	that	its	idle
gets	to	retransmits	its	packets.	In	our	case	this	is	Host	A.

	

The	more	traffic	you	have	on	your	network	segment,	the	more	collisions	are
likely	to	take	place.	Collisions	are	normal	in	Ethernet	but	if	too	many	occur,	it
will	cause	delays.	This	will	be	covered	in	more	detail	shortly.
	

Collision	Domains
Back	in	the	eighties	and	nineties	a	hub	(or	even	a	single	long	piece	of	cable)	was
typically	used	to	connect	several	hosts	together	creating	a	LAN	and	a	so-called
collision	domain.	A	collision	domain	encompasses	a	layer	two	network	and	the
hosts	attached	to	it,	those	hosts	having	the	potential	to	communicate	at	the	same
time,	causing	a	collision.

	
In	this	collision	domain	every	host	can	talk	directly	with	every	other	using	the
hub.	The	hub	simply	receives	a	frame	and	sends	it	to	each	host	connected	to
every	port	(you	can	see	why	hubs	were	originally	called	repeaters).	If	a	host
connected	to	the	hub	is	the	intended	recipient	it	will	accept	the	frame.	If	not,	the
frame	is	dropped.	A	hub	cannot	send	frames	to	a	specific	host;	instead	it	floods
the	network	(and	every	host	on	it)	with	every	frame	to	ensure	it	is	received	by
the	correct	host.

	

Note								Hubs	and	other	shared	network	media	devices	(be	it
Ethernet	based,	Token	Ring	or	something	else)	are	obviously
outdated	technologies.	However,	we’ve	described	them	to	help	you
understand	why	and	how	things	have	changed	over	time.
	

	

As	more	hosts	are	added	to	the	network,	the	more	collisions	that	occur	(as
described	previously),	eventually	leading	to	an	unusable	network.	In	a	network
experiencing	a	high	collision	rate,	little	can	be	transmitted	as	the	network	is
constantly	flooded	with	jam	signals.	This	is	why	switches	were	introduced;	a
switch	divides	every	port	on	the	switch	into	a	separate	collision	domain	which
significantly	reduces	or	even	eliminates	collisions.	Effectively	every	port	on	the
switch	is	a	dedicated	layer	two	network	(and	collision	domain)	and	there	is	no
longer	a	shared	network	medium.
	

MAC	Addressing
MAC	addresses	are	also	known	as	hardware	(or	physical)	addresses	and	every
Ethernet	network	interface	has	one.	They	are	assigned	by	the	IEEE	and	written
in	a	colon	separated	hexadecimal	format	(at	least,	they	should	be).	A	MAC
address	consists	of	48bits	(6	bytes)	where	the	first	24	bits	are	used	to	identify	the
vendor	and	the	last	24	bits	are	used	to	identify	the	device	(or	device	interface)
manufactured	by	that	vendor.	Here’s	an	example:	00:50:56:C0:00:08;	note	that
leading	zeroes	can	be	omitted,	resulting	in	50:56:C0:8.

	
The	good	thing	about	the	standardization	of	MAC	Addressing	is	its
compatibility.	When	data	frames	pass	across	differing	physical	layer	interfaces
such	as	Ethernet	onto	Fast	Ethernet	and	vice	versa,	there	is	no	need	to	change	the
Ethernet	frame	addressing	format.	But	some	changes	may	be	needed	when
bridging	between	different	media	types	like	FDDI	and	Ethernet	or	Token	Ring
and	Ethernet.

	
Pretty	much	every	network	attached	device	builds	a	table	for	each	MAC	address
it	‘sees’	on	the	LAN	segment;	this	is	called	a	MAC	Address	Table.	This	is	used
in	conjunction	with	a	protocol	called	Address	Resolution	Protocol	to	map	logical
(network	layer)	IP	addresses	to	physical	MAC	addresses	on	a	local	network.
This	will	be	covered	in	more	detail	shortly.

	
You	can	find	the	current	list	of	MAC	addresses	and	their	allocations	to	vendors
(known	as	Organizationally	Unique	Identifiers	(OUIs))	at:
https://standards.ieee.org/develop/regauth/oui/public.html.	You	can	use	this	page
to	search	for	a	MAC	address	and	see	which	vendor	it	belongs	to.

	

MAC	Address	Table
Unlike	a	hub,	when	a	switch	is	used	on	the	network	and	hosts	are	attached	and
transmit	data	across	the	network	the	switch	starts	to	learn	every	host’s	MAC
address.	This	process	is	unsurprisingly	called	learning.	This	information	is
stored	in	what	is	called	a	MAC	address	table.	The	MAC	address	table	will
contain	the	MAC	address	of	the	host	and	the	port	that	it	is	connected	to.

https://standards.ieee.org/develop/regauth/oui/public.html

Therefore	when	the	switch	receives	a	frame	from	a	host	it	will	look	through	its
MAC	address	table	for	the	destination	and	if	the	entry	is	found	in	the	MAC	table
it	will	forward	the	frames	out	of	the	corresponding	port.	This	provides
considerable	benefits	over	hubs	which	‘repeat’	or	flood	every	frame	out	of	every
port	(except	the	receiving	one)	all	the	time,	as	fewer	frames	are	transmitted	and
hosts	do	not	need	to	deal	with	frames	that	are	not	destined	for	them.
	

When	the	switch	receives	frames	with	a	destination	MAC	address	that	it	does
not	have	a	MAC	address	table	entry	for,	the	switch	does	send	out	the	frame	on
every	port	except	the	one	the	frame	arrived	on.	This	process	is	called	flooding	–
this	is	what	a	hub	does	with	every	frame	all	the	time.	When	(and	if)	the	unknown
host	replies	to	the	frame,	the	MAC	address	is	stored	in	the	switch’s	MAC
address	table	so	when	frames	are	destined	for	that	host	again	the	switch	will
know	on	which	port	it	should	send	out	the	frames.

As	mentioned	previously,	a	switch	divides	every	port	on	the	switch	into	a
separate	collision	domain	which	means	that	every	port	acts	as	a	dedicated	layer
two	network,	which	significantly	reduces,	or	even	eliminates	collisions.	This	is
very	important	to	remember.
	

Routers	also	separate	collision	domains	but	in	a	different	manner	to	a	switch;
they	do	so	because	they	operate	at	layer	three,	the	network	layer	and	do	not
forward	layer	two	frames	between	networks.
	

Broadcast	Domains
Broadcasts	are	necessary	in	an	Ethernet	network	to	support	a	number	of
technologies	such	as	ARP	(discussed	shortly).	A	layer	two	broadcast	frame	is
sent	to	the	destination	MAC	address	of:	FF:FF:FF:FF:FF:FF	and	is	accepted	and
inspected	by	every	host	in	a	broadcast	domain.	A	broadcast	domain	is	defined	as
the	group	of	hosts	that	will	receive	a	broadcast	message	transmitted	by	any	one
of	the	group’s	members.	In	other	words,	a	broadcast	domain	consists	of	all	the
hosts	connected	to	and	that	can	communicate	with	each	other	on	the	same
physical	or	virtual	layer	two	network.	A	broadcast	domain	can	contain	multiple
collision	domains	–	more	soon.

	
Whilst	required,	broadcasts	can	cause	host	and	network	performance	issues	if	the
network	is	constantly	flooded	with	broadcast	packets.	Since	Ethernet	relies	on
CSMA/CD,	if	we	have	a	lot	of	network	traffic	this	will	increase	the	amount	of
wait	time	and	collisions	hosts	on	the	network	experience	(ignoring	for	a	moment
the	benefits	of	switches).	For	these	reasons	it	is	desirable	to	divide	large
broadcast	domains	into	many	smaller	broadcast	domains	to	reduce	unwanted
network	traffic	and	unnecessary	host	frame	processing.	In	order	to	do	this	a	layer
three	device	called	a	router	is	introduced.	A	router	helps	decrease	broadcasts	in
the	network	because	it	does	not	forward	layer	two	(or	for	that	matter	layer	three)
broadcasts	between	networks.

	

Issues	with	Dividing	Broadcast	Domains
Even	if	creating	multiple	broadcast	domains	has	its	benefits,	there	are	some
downsides	too.	For	example,	DHCP	is	a	protocol	that	automatically	assigns	IP
addresses	to	devices	on	the	network	and	it	uses	broadcasts	to	operate.	If	you
have	two	separate	broadcast	domains	and	one	of	the	domains	has	a	running
DHCP	server	and	the	other	does	not,	you	have	a	problem.	Since	routers	do	not
forward	broadcasts,	the	DHCP	server	in	one	broadcast	domain	cannot	assign	IP
addresses	to	the	hosts	in	the	other	broadcast	domain.

	
There	are	ways	to	solve	this	but	it	is	worth	keeping	in	mind	when	you	are	setting
up	your	network	topology.

	

The	Difference	between	Collision	Domains	and	Broadcast
Domains
A	collision	domain	is	created	when	multiple	hosts	are	connected	to	a	networking
device	like	a	hub.	As	we	previously	discussed	a	hub	transmits	data	to	all	hosts
which	are	connected	to	it.	Therefore	there	is	a	chance	a	collision	will	occur
between	the	clients	and	that	is	why	it	is	said	to	be	a	collision	domain.

	
Collision	domains	can	be	divided	using	a	switch	which	divides	every	port	on	the
switch	into	a	separate	collision	domain	and	transmits	data	according	to	MAC
address	information,	as	shown	next;

	

	

Whether	connected	to	a	hub	or	a	switch	hosts	on	the	same	physical	layer	two
network	(or	VLAN)	are	still	part	of	a	broadcast	domain.	Large	broadcast
domains	are	divided	into	smaller	ones	to	reduce	the	amount	of	traffic	that	is	seen
on	the	network.	A	router	or	other	layer	three	device	is	used	because	they	do	not
forward	broadcast	frames	between	networks,	as	shown;
	

	

Exam	Tip								It	is	very	important	to	understand	the	difference
between	collision	domains	and	broadcast	domains	and	why	it	is
important	to	minimize	the	size	of	them.	Make	sure	you	fully
understand	this.

	

Address	Resolution	Protocol	(ARP)
ARP’s	purpose	is	to	glue	together	(or	map)	layer	three	IP	addresses	to	layer	two
MAC	addresses.	Remember	that	layer	three	addresses	are	logical	and	layer	three
has	no	understanding	of	the	underlying	physical	network	topology.	Equally,
layer	two	has	no	understanding	of	layer	three	addressing.	When	layer	two	is
passed	a	packet	from	layer	three,	how	does	it	know	where	to	send	it?	What	MAC
address	should	layer	2	use?

	
This	is	where	ARP	comes	into	play,	by	providing	layer	two	with	the	information
it	needs	in	order	to	transmit	frames	to	the	correct	destination	layer	two	address
that	is	currently	associated	with	the	logical	address	layer	three	provided.

	
When	a	host	wishes	to	send	a	packet	to	an	IP	address,	layer	two	needs	to	know
the	MAC	address	of	the	destination	host.	In	order	to	get	it,	the	host	sends	an	ARP
request	for	the	IP	address,	a	broadcast	to	all	the	hosts	on	the	local	layer	two
network.	If	the	IP	address	is	a	remote	address	(on	a	different	logical,	layer	three
network)	it	will	instead	send	an	ARP	request	for	the	default	gateway’s	MAC
address	because	that	will	handle	the	traffic.

	
The	ARP	request	contains	the	source	host’s	IP	and	MAC	addresses	and	the	IP
address	of	the	system	it	wishes	to	communicate	with.	The	ARP	request	is	sent
out	using	a	layer	two	broadcast	which	means	that	the	request	is	received	by	all	of
the	hosts	in	the	same	broadcast	domain.	When	the	requesting	host	receives	the
MAC	address	of	the	destination	system	in	an	ARP	response,	it	saves	it	in	its	ARP
cache	for	a	period	of	time.	The	whole	process	is	described	in	the	following
diagram;

	

The	ARP	Process
	

1.	 The	host	sending	data	checks	its	own	ARP	table	and	if	the	address	does	not
exist	it	generates	an	ARP	request	containing	the	following
	
a.	 Its	own	(source)	IP	address	and	MAC	address

	
b.	 The	IP	address	of	the	receiving	host

	
c.	 Destination	MAC	address:	FF:FF:FF:FF:FF:FF

	
2.	 The	sending	host	sends	out	the	ARP	request	as	a	broadcast	within	its

broadcast	domain.
	

3.	 The	hosts	within	the	broadcast	domain	that	receive	the	ARP	request
examine	it	and	check	if	it	is	requesting	their	own	IP	address	and	MAC
address.	If	it	isn’t,	it	discards	the	packet	silently.
	

4.	 When	the	correct	host	picks	up	the	packet	it	will	send	a	reply	back	to	the
sender.	This	packet	is	called	an	ARP	Reply	(or	response).	The	host	will	use
its	own	IP	address	and	MAC	address	in	the	reply	and	send	the	ARP	reply
back	to	the	original	sender.

	

	
5.	 When	the	sending	host	receives	the	MAC	address	of	the	requesting	host,	it

stores	this	information	in	its	ARP	cache	and	then	proceeds	with	sending
the	intended	packet	using	the	MAC	address	it	just	received.

	

There	is	some	confusion	as	to	where	ARP	should	be	placed	in	the	OSI	reference
model.	Some	say	that	it	should	belong	in	the	network	layer	because	it	helps	the
Internet	Protocol	(IP)	with	resolving	hardware	addresses	and	some	say	that	it
should	belong	to	the	data	link	layer	since	its	messages	are	carried	within	data-
link	layer	frames.
	

ARP	is	not	accounted	for	in	the	original	OSI	Model:	ISO	7498-1	created	in
1984.	An	appendix	to	the	standard,	the	Internal	Organization	of	the	Network
Layer	(IONL):	ISO	8648	created	in	1988	specifies	a	structure	for	ARP	like
protocols	(subnetwork	dependent	convergence	facilities)	but	still	isn’t	specific
on	a	layer.	However,	considering	ARP’s	use	of	MAC	addresses	for
communication	(IP	addresses	are	the	payload,	not	the	means	of	communication)
and	inability	to	cross	layer	three	boundaries	we	think	it’s	pretty	safe	to	consider
it	a	layer	two	protocol.	[The	ISO	charges	for	its	standards	documents	but
RFC994	contains	most	of	the	draft	text	that	formed	ISO	8648	if	you	fancy	a	read
	

Note								If	the	destination	is	located	on	another	logical	network
then	ARP	will	not	request	the	IP	address	of	the	ultimate

http://tools.ietf.org/html/rfc994

destination.	It	will	instead	use	the	IP	address	of	the	default	gateway
and	send	the	data	to	the	default	gateway	which	passes	the	traffic	on
to	the	next-hop	address	until	it	reaches	its	final	destination.
	

	

VLANs	&	VLAN	Tagging
A	VLAN	or	a	Virtual	LAN	is	a	virtual	network	that	has	the	technical	properties
of	a	physical	layer	two	network	without	the	physical	constraints.	All	hosts	in	the
same	VLAN	can	communicate	with	each	other,	as	hosts	connected	to	the	same
physical	LAN	can.	As	with	physical	networks,	hosts	in	one	VLAN	cannot
communicate	with	hosts	in	another	without	using	a	router	or	some	other	layer
three	device	to	route	traffic	between	the	two.	A	VLAN,	like	any	physical
network	also	represents	a	single	broadcast	domain.

	
Unlike	physical	networks	formed	using	a	hub,	multiple	VLANs	can	exist	on	a
single	switch	and	each	port	on	a	suitable	switch	could	be	assigned	a	different
VLAN.	As	with	any	virtualization	feature,	this	provides	a	great	deal	of	flexibility
and	independence	from	physical	considerations.	For	instance,	if	you	have	two
departments	that	must	be	on	different	networks,	rather	than	using	a	dedicated
hub	per	department	you	can	use	a	single	switch	with	two	VLANs	and	still
maintain	the	required	separation.

	
This	is	illustrated	in	the	following	diagram;

	

	

In	the	diagram	you	can	see	that	we	have	four	VLANs,	Engineering,	Marketing,
Production	and	Sales.	The	network	is	divided	into	different	floors	and	each	floor
contains	four	hosts	that	are	physically	connected	to	the	same	switch.	Each	port
on	the	switch	is	assigned	to	one	of	these	VLANs	and	each	host	connected	to	one
of	those	ports	will	therefore	belong	to	that	VLAN.
	

This	means	that	even	though	the	hosts	have	different	physical	locations	they	are
still	part	of	the	same	logical	network,	the	same	VLAN.	Even	though	the	hosts	in
each	VLAN	are	on	different	floors	and	connected	to	different	switches,	they	can
still	communicate	with	each	other.	Hosts	on	the	same	floor	but	in	different
VLANs	cannot,	at	least	not	without	the	aid	of	a	router.
	

Note								Most	modern	day	switches	support	layer	3	switching
which	means	they	have	the	ability	to	route	traffic	between
VLANS.	Thus,	you	do	not	actually	have	to	attach	a	router	to	the

network.
	
Using	VLANs	adds	a	32-bit	(4	byte)	sub	header	to	Ethernet	frames	where
necessary;	typically	internally	within	a	switch	and	across	switch	to	switch	links
(trunks)	that	carry	multiple	VLANs.	This	header	is	called	a	VLAN	tag	and	it
identifies	which	VLAN	the	frame	belongs	to.	How	this	works	is	specified	in	the
IEEE	802.1Q	standard.	Unfortunately	the	standards	document	is	not	free;	it	can
be	purchased	for	a	rather	high	price	at	the	following	URL:
http://standards.ieee.org/findstds/standard/802.1Q-2014.html.

	
	

Note								When	the	frames	travels	over	what	is	called	a	trunk	port
the	tag	is	not	removed.	We	will	discuss	trunk	ports	in	more	detail
in	this	chapter.
	

	

Since	VLANs	are	not	dependent	on	network	dedicated	physical	connections,
member	hosts	can	be	located	on	any	switch	where	that	VLAN	is	available	and
trunked	and	a	host	can	even	belong	to	several	VLANs.	However	in	order	to	use
more	than	one	VLAN	on	a	single	port	you	need	to	enable	VLAN	trunking.
	

VLAN	Trunking
When	configuring	VLANs	on	a	switch	port	you	can	use	one	of	two	modes;
access	mode	(also	known	as	untagged	mode)	or	trunk	mode	(also	known	as
tagged	mode).	Access	mode	means	you	use	a	single	VLAN	on	a	port	(or
interface)	and	a	tag	is	not	used,	at	least	when	sending	and	receiving	frames	to
and	from	the	connected	host	(a	tag	may	still	be	added	if	the	frames	cross	a	trunk
port).	Trunk	mode	however	enables	you	to	use	multiple	VLANs	on	a	single	port,
with	each	frame	being	sent	or	received	with	a	tag	to	identify	the	VLAN	it
belongs	to.
	

This	is	beneficial	when,	for	instance,	you	expand	your	network	by	adding	more
switches	and	you	want	to	use	the	same	VLAN(s)	on	the	new	switches.	If	you	are

http://standards.ieee.org/findstds/standard/802.1Q-2014.html

using	VLAN1,	VLAN2	and	VLAN3	on	your	current	switch	and	you	want	to	use
those	VLANs	on	the	new	switch,	how	are	you	going	to	connect	them?	If	you	just
add	the	VLANs	to	the	new	switch	and	connect	it	to	the	existing	one,	hosts	on	the
same	VLAN	connected	to	different	switches	will	not	be	able	to	communicate.
	

You	need	to	create	a	trunk	port	on	each	switch	in	order	for	the	VLAN
information	to	pass	between	the	existing	and	new	in	the	form	of	tagged	frames.
The	trunk	ports	on	each	will	serve	as	a	passage	between	them,	identifying	every
VLAN	you	use	in	your	network.	This	is	illustrated	in	the	following	diagram;
	

	

Note								You	could	actually	not	use	a	trunk	(and	therefore	VLAN
tagging)	but	instead	you’d	need	to	use	a	dedicated	port	on	each
switch	for	every	VLAN	used	across	the	two	which	would	be	very
wasteful.	In	the	previous	example	you’d	use	three	ports	per	switch
instead	of	just	one	per	switch.
	

	

The	Benefits	of	Using	VLANs
VLANs	are	a	great	way	to	segment	your	network	and	reduce	collision	and
broadcast	domain	size	without	using	additional	devices.	You	can	use	dedicated
VLANs	per	business	unit	or	the	different	floors	of	a	building.	For	instance,	if	an

organization	has	divided	their	VLANs	based	on	departments	and	the	IT
department	has	been	moved	to	another	floor	in	the	building.	Instead	of	changing
the	cabling	of	the	whole	building,	they	could	use	VLANs	and	just	change	the
VLAN	tag	of	the	relevant	switch	ports	in	the	new	location.	This	is	just	one	of	the
advantages	of	VLANs;	you	can	also	implement	VLANs	if	you	have	a	lot	of
clients	on	the	same	network	and	want	to	lower	the	level	of	broadcasts.
	

Layer	3	Switching
When	first	introduced	switches	were	limited	to	layer	two	functions;	this	meant
routing	traffic	between	VLANs	required	the	involvement	of	a	dedicated	(and
expensive)	router.	This	is	of	course	exactly	the	same	as	when	using	a	physical
LAN	but	is	a	significant	drawback	where	VLANs	are	concerned	as	it	negates	the
benefits	of	flexibility	and	physical	independence.	To	overcome	this,	layer	three
switching	was	introduced.

	
This	simply	provides	layer	three	router	functions	within	a	switch.	As	well	as
retaining	the	general	benefits	of	using	VLANs	you	also	save	money	as	you	do
not	need	to	buy	additional	hardware	to	route	traffic	between	VLANs.	Since	these
devices	are	capable	of	both	switching	and	routing,	their	cost	is	usually	higher
than	that	for	just	a	layer	two	switch	but	still	cheaper	than	purchasing	both	a	layer
two	switch	and	dedicated	layer	three	router.
	

VLANs	in	Real-Life	Scenarios
Some	people	ask, “Why	can’t	I	just	subnet	my	network?	Wouldn’t	that	give	me
the	same	result?”. 	The	benefit	that	VLANs	provide	over	a	subnet	is	that	devices
that	are	in	two	different	physical	locations	can	be	on	the	same	network	and	two
devices	in	the	same	physical	location	can	be	on	different	ones.
	
	
Another	common	question	is, “How	large	does	my	network	have	to	be	in	order
to	gain	the	benefits	of	a	VLAN?”. 	Your	network	does	not	really	need	to	be	a
certain	size	to	be	able	to	gain	the	benefits	of	VLANs.	As	mentioned	before,	you
can	divide	your	VLANs	based	on	physical	floors	or	departments	or	any	other
way	you	might	like	without	purchasing	dedicated	hardware.	If	you	experiencing

performance	problems	within	your	network,	creating	VLANs	can	decrease
broadcasts	and	therefore	increase	performance.	VLANs	will	also	help	you	apply
security	policy	as	you	can	segregate	hosts	into	separate	VLANs.	You	can	then
limit	the	traffic	between	the	two.	The	possibilities	are	endless.
	

Exam	Tip								In	configuring	and	managing	an	F5	device,	you
need	to	fully	understand	what	a	VLAN	is	and	what	it	used	for.
When	configuring	interfaces	on	a	F5	device	you	associate	one	or
more	VLANs	with	each	interface	and	may	also	configure	tagging.
	

	 	

Link	Aggregation	Control	Protocol	(LACP)
Link	Aggregation	Control	Protocol	is	a	protocol	that	combines	(or	bundles)
several	physical	Ethernet	interfaces	into	a	single	logical	link	that	operates	using
one	MAC	address,	as	if	it	were	a	single	physical	interface.

	
This	technology	is	known	by	many	different	names	depending	on	which	vendor
provides	it.	For	instance	Cisco	has	called	their	link	aggregation	technology
EtherChannel	(but	note	use	of	LACP	is	optional)	and	other	vendors	use	the
names	teaming	or	trunking.	LACP	is	standardized	under	the	IEEE	standard,
802.3ad	or	802.1ax.

	

Exam	Tip								In	the	F5	world	several	combined	Ethernet
connections	are	called	a	trunk.	This	can	be	very	confusing	since
VLAN	tagging	is	also	described	as	trunking	by	Cisco	and	other
vendors.

	

The	two	main	advantages	of	using	LACP	(or	any	similar	technology)	are
improved	reliability	and	aggregated	throughput.
	

If	one	of	the	physical	links	in	a	bundle	suffers	from	a	failure,	the	device	keeps
transmitting	and	receiving	both	outgoing	and	incoming	frames	on	the	other
physical	links	that	are	still	active.	This	technology	is	so	seamless	that	a	user	or
an	application	will	not	usually	experience	any	issues.

	

Chapter	Summary
One	of	the	core	functions	of	the	Data	Link	Layer	is	the	MAC-addressing.
This	is	responsible	for	identifying	the	host	on	the	network	using	what	is
known	as	a	MAC-address.

	
Carrier	Sense	Multiple	Access:	Collision	Detection	or	CSMA/CD	is	the
access	method	of	Ethernet	networking.	It	was	introduced	in	1985	and	is
part	of	the	IEEE	802.3	standard.

	
A	switch	makes	it	possible	to	decrease	collisions	by	separating	each	port	in
the	switch	into	separate	collision	domains.

	
A	broadcast	domain	is	a	group	of	hosts	that	will	receive	a	broadcast
message	transmitted	by	any	one	of	its	members.	A	broadcast	domain	can
be	divided	into	several	broadcast	domains	by	using	a	router.

	
ARP	stands	for	Address	Resolution	Protocol	and	it	is	responsible	for
keeping	track	of	what	MAC	address	is	connected	to	a	specific	IP	address
and	vice	versa.

	
VLANs	or	Virtual	LANs	are	logical	network	segments	that	help	manage
the	network	by	grouping	certain	ports	together	over	one	or	more	switches.
Since	VLANs	work	above	the	physical	layer	it	does	not	matter	that	the
hosts	are	connected	to	different	ports	over	multiple	switches,	they	can	still
talk	to	each	other.

	
Link	Aggregation	Control	Protocol	is	a	technology	that	combines	several
Ethernet	connections	into	one	logical	link	that	operates	under	one	MAC
address.	In	the	F5	world	combining	several	Ethernet	connections	is	called	a
trunk.	This	can	be	very	confusing	since	VLANs	also	uses	the	concept	of
trunking	ports	in	the	Cisco	and	other	vendor	worlds.

	

Chapter	Review
In	order	to	test	your	knowledge	and	understanding	of	this	chapter,	please	answer
the	following	questions.	You	will	find	the	answers	and	explanations	of	the
questions	at	the	end	of	this	chapter.

	
1.	 What	access	method	does	Ethernet	use?

	
a.	 Carrier	Sense	Equal	Access:	Collision	Detection

	
b.	 Carrier	Sense	Multiple	Access:	Collision	Avoidance

	
c.	 Carrier	Sense	Multiple	Access:	Collision	Detection

	
d.	 Carrier	Sense	Single	Access:	Collision	Detection

	
2.	 How	many	bits	does	a	MAC	address	have?

	
a.	 24	bits
b.	 32	bits
c.	 48	bits
d.	 64	bits

	
3.	 What	device	can	be	used	to	divide	a	collision	domain	into	several	smaller

collision	domains?	(Choose	the	most	correct	answer)
	
a.	 A	switch

	
b.	 A	hub

	
c.	 A	router

	
d.	 Both	a	switch	and	a	router	can	be	used.

	
4.	 What	MAC	address	is	used	when	an	ARP	request	is	sent	out	on	the	local

area	network?
	

a.	 255.255.255.255
	

b.	 FF:FF:FF.FF:FF:FF
	
c.	 The	ARP	request	is	addressed	separately	to	each	device	on	the	LAN.

	
d.	 It	uses	its	own	MAC	address.

	
5.	 What	are	VLAN	trunks	used	for?

	
a.	 It	is	used	to	tag	only	one	VLAN	on	a	certain	port	on	the	switch.

	
b.	 It	is	used	to	combine	several	Ethernet	connections	into	one	logical

link	that	operates	under	one	MAC	address.
	
c.	 It	is	used	to	enable	several	VLANs	on	one	single	port	on	the	switch.

This	makes	it	possible	to	connect	several	VLANs	between	multiple
switches.

	
d.	 It	is	used	to	enable	several	switches	to	be	connected	together	for

configuration	synchronization	and	hardware	redundancy.
	

Chapter	Review:	Answers
You	will	find	the	answers	to	the	chapter	review	questions	below:

1.	 The	correct	answer	is:	C
	
a.	 Carrier	Sense	Equal	Access:	Collision	Detection

	
b.	 Carrier	Sense	Multiple	Access:	Collision	Avoidance

	
c.	 Carrier	Sense	Multiple	Access:	Collision	Detection

	
d.	 Carrier	Sense	Single	Access:	Collision	Detection

	

Option	b	is	the	access	method	of	the	wireless	Ethernet	standard	802.11	and
option	a	and	d	do	not	exist.
	

2.	 The	correct	answer	is:	C
	
a.	 24	bits

	
b.	 32	bits

	
c.	 48	bits

	
d.	 64	bits

	

Option	b	is	the	number	of	bits	an	IP-address	contains	and	option	d	is	the	amount
of	bits	the	new	host	operating	system	kernels	operates	on.
	
3.	 The	correct	answer	is:	D

	
a.	 A	switch

	
b.	 A	hub

	
	

c.	 A	router
	

d.	 Both	a	switch	and	a	router	can	be	used.
	

Both	a	switch	and	a	router	are	able	to	divide	collision	domains	but	the	router
also	has	the	ability	to	divide	broadcast	domains.	A	hub	does	not	have	the	ability
to	divide	collision	domains.
	

4.	 The	correct	answer	is:	B
	
a.	 255.255.255.255

	
b.	 FF:FF:FF:FF:FF:FF

	
c.	 The	ARP	request	is	addressed	separately	to	each	device	on	the	LAN.

	
d.	 It	uses	its	own	MAC	address.

	

When	an	ARP	request	is	sent,	the	sending	host	uses	the	broadcast	address	of	the
MAC	address	which	is	FF:FF:FF:FF:FF:FF.	This	ARP	request	will	therefore	be
sent	out	to	every	host	on	the	local	segment	and	the	host	with	the	correct	IP-
address	will	respond	back	with	its	MAC	address.

	

5.	 The	correct	answer	is:	C
	
a.	 To	tag	only	one	VLAN	on	a	certain	port	on	the	switch.

	
b.	 It	is	used	to	combine	several	Ethernet	connections	into	one	logical

link	that	operates	under	one	MAC	address.
	
c.	 It	is	used	to	enable	several	VLANs	on	one	single	port	on	the

switch.	This	makes	it	possible	to	connect	several	VLANs	between
multiple	switches.

	
d.	 A	VLAN	trunk	enables	several	switches	to	be	connected	together	for

configuration	synchronization	and	hardware	redundancy.
	

VLAN	trunks	are	used	to	send	several	VLAN	IDs	over	a	single	connection.	This
is	configured	by	the	network	administrator	on	a	specified	port	on	the	switch.
This	enables	the	VLAN	to	span	over	several	switches	using	the	trunk	port.
	

Remember	that	an	F5	device	also	uses	trunk	ports	but	it	means	something
completely	different.	In	F5,	a	trunk	port	is	the	same	as	Link	Aggregation	Control
Protocol	(LACP)	which	means	that	you	combine	several	Ethernet	connections
into	one	logical	link	that	operates	under	one	MAC	address.

5.										The	Network	Layer	in	Detail
	

Internet	Protocol	(IP)	is	only	one	of	many	real	world	protocols	that	operate	at	the
network	layer.	However,	as	it	is	used	almost	universally	it’s	what	the	exam	and
therefore	this	book	focuses	on	solely	in	relation	to	the	network	layer.	This
section	will	almost	entirely	focus	on	addressing;	later	chapters	will	cover	other
layer	three	related	subjects	such	as	routing	and	NAT,	which	will	build	upon	on
your	understanding	of	this	subject.
	

The	header	fields	added	by	this	layer	to	encapsulate	the	data	(the	variable	length
layer	4	payload)	are	as	follows;

Version	–	four	bits
	
Internet	Header	Length	(IHL)	–	four	bits
	
Differentiated	Services	Code	Point	(DSCP)	–	six	bits
	
Explicit	Congestion	Notification	(ECN)	–	two	bits
	
Total	Length	–	two	Bytes
	
Identification	–	two	Bytes
	
Flags	–	three	bits
	
Fragment	Offset	–	13	bits
	
Time	to	Live	(TTL)	–	one	Byte
	
Protocol	–	one	Byte
	
Header	Checksum	–	two	Bytes
	
Source	IP	Address	–	four	Bytes

	
Destination	IP	Address	–	four	Bytes
	
One	or	more	optional	Options	headers	–	variable	length

	

	

We’ll	explore	the	purpose	of	some	of	these	headers	over	the	course	of	this	and
the	Switching	&	Routing	chapters.
	

Understanding	IP	Addressing
An	IP	address	is	a	logical,	physically	independent	address,	very	different	to	a
MAC	address	which	relates	to	a	specific	physical	device	interface.	An	IP	address
is	used	to	identify	a	network	interface	on	a	logical	IP	network	(a	MAC	address
identifies	a	network	interface	or	device	attached	to	a	physical	network).	Multiple
IP	addresses	can	be	assigned	to	a	physical	interface.

	
The	IP	protocol	and	IP	addresses	make	it	possible	for	any	host	to	communicate
with	any	other,	regardless	of	location	or	physical	network	type,	as	long	as	they
have	an	IP	address	and	a	subnet	mask	to	identify	which	network	they	belong	to
(and	those	networks	are	connected	in	some	way).

	
An	IPv4	(the	predominant	version)	address	is	composed	of	32-bits	(4	bytes)	and
has	both	a	host	portion,	which	identifies	a	specific	host	and	a	network	portion
which	identifies	which	network	the	host	belongs	to.	This	32-bit	address	can	be
broken	down	into	four	decimal	parts	with	each	composed	of	8	binary	bits	(an
octet);	four	times	eight	is	thirty-two	bits	(4*8=32).	A	subnet	mask	is	used	to
differentiate	what	portion	of	the	address	is	the	host	portion	and	what	portion	is
the	network.	This	will	be	described	in	detail	shortly.

	

Structure	of	an	IP	Address
Each	decimal	value	in	an	IP	address	has	an	8	bit	binary	equivalent.	The	decimal
IP	address	is	converted	into	a	binary	format	which	the	host	understands	(as	with
all	data	eventually).	Decimal	values	are	used	when	expressing	IP	addresses	only
for	our	own	convenience	and	speed;	binary	expression	would	be	longer,	more
time	consuming	and	more	prone	to	error.

	
Each	octet	(8	bits,	1	byte)	of	an	IP	address	is	converted	to	a	decimal	value	and
separated	by	a	period	(dot).	For	this	reason,	an	IP	address	is	said	to	be	expressed
in	dotted	decimal	format	(for	example,	192.168.0.1).	The	value	in	each	octet
ranges	from	0	to	255	decimal,	or	00000000	-	11111111	binary.

	
Here	is	an	example	if	all	the	binary	values	in	an	octet	are	set	to	one	(with	the

decimal	calculation	and	value	in	brackets);
	

	

Here	is	an	example	of	the	first	octet	in	the	address,	192.168.0.1	expressed	in
binary	(with	the	decimal	calculation	and	value	in	brackets);
	

	

Here	is	the	whole	IP	address	presented	in	both	binary	and	decimal	values.
	

	

Converting	Between	Binary	&	Decimal
In	order	to	fully	understand	IP	addressing	we	need	to	be	able	to	convert	an	IP
address	from	its	decimal	form	to	a	binary	one	and	vice	versa.	We	do	this	for
several	reasons.	For	instance	when	you	are	calculating	subnets	or	when	you	are
calculating	how	many	hosts	a	network	can	contain.	We	will	go	through	some	of
these	common	tasks	in	the	following	sections.

	
Converting	between	binary	and	decimal	formats	can	be	difficult.	The	key	to
learning	this	is	to	use	and	practice	many	different	examples	until	you	fully
understand	how	it	works.

	

Converting	from	Binary	to	Decimal
First	of	all,	each	binary	bit	(digit)	in	an	octet	has	its	own	value.	These	values
start	at	1	and	double	for	every	step	you	make	to	the	left	until	you	reach	the	final
bit	in	the	octet.	Each	octet	holds	a	value	of	2^0	(two	to	the	power	of	zero)
through	to	2^7	(this	is	known	as	the	base-2	numbering	system).	See	the
following	example:

	

	
This	is	one	of	the	octets	of	an	IP	address	expressed	in	binary	digits.	Each	digit
has	a	decimal	value	and	in	order	to	calculate	it	you	will	need	to	add	together	the
base-2	value	of	each	binary	digit	of	1,	as	follows;

	

	

In	this	example	the	decimal	value	is	192	because	the	first	two	(most	significant)
bits	are	activated	(a	1	(one)	rather	than	a	zero).	This	will	give	the	base-2	values

of	128	and	64,	the	sum	of	which	is	192	in	decimal.	This	method	is	used	for	every
octet	in	the	IP	address,	both	the	host	and	network	portions.
	

Converting	From	Decimal	to	Binary
There	will	be	times	when	you	need	to	convert	an	IP	address	from	a	decimal
format	to	a	binary	format	and	the	method	used	is	similar	to	the	binary	to	decimal
method.	Some	examples	of	when	you	might	do	this	would	be	when	you	are
calculating	how	many	available	hosts	a	network	can	contain	or	when	you’re
calculating	the	broadcast	address	of	a	network.

	
For	instance	let	us	use	the	decimal	number	of	168.	We	want	to	convert	this	into
binary	format.	To	do	this	we	use	our	conversion	table	again.
	

	

Instead	of	adding	the	decimal	values	you	subtract	them.	To	simplify,	ask
yourself	this;	can	you	subtract	128	from	168?		Yes,	then	we	subtract	128	from
168	and	add	a	1	to	the	table	(to	represent	the	128	value).	See	the	following
example:
	

	

Note								It	is	mathematically	possible	to	subtract	a	bigger	number
from	a	smaller	number	but	when	calculating	subnets	the	principal
is	that	you	cannot	have	any	negative	numbers.	That	is	why	it	is
important	to	only	subtract	if	it	is	possible.
	

	

168-128	is	40	and	we	move	on	to	the	next	value,	can	you	subtract	64	from	40?	

The	answer	is	no	and	therefore	we	do	not	add	a	1	to	the	table.	We	proceed	to	the
next	value;	can	you	subtract	32	from	40?	Yes,	then	we	subtract	32	from	40	and
add	a	1	to	the	table	(to	represent	the	32	value),	see	the	following	example:
	

	

We	proceed	like	this	until	we	have	reached	a	decimal	value	of	0	and	when	we
are	done	it	should	look	like	this:
	

	

So	the	binary	value	of	168	is	01010100.
	
There	are	many	tools	and	websites	that	can	help	you	convert	from	decimal	to
binary	and	vice	versa	but	it	is	necessary	to	know	how	to	do	this	with	pen	and
paper.	Practice	this	with	several	different	examples	because	it	is	essential	to	be
able	to	do	so.

Addresses	Classes
	

IP	addresses	are	divided	into	several	different	classes.	These	classes	specify
what	portion	of	the	IP	address	identifies	the	network	portion	and	what	identifies
the	host	portion.	The	classes	A,	B	and	C	are	the	most	common	ones.
	

	

IP	Address	Class Class	A Class	B Class	C
First	bit	values	(binary) 0 10 110
First	byte	value
(decimal)

0-127 128-191 192-223

Number	of	network
identifiers	bits

8 16 24

Number	of	host 24 16 8

identifier	bits
Number	of	possible
networks

126 16,384 2,097,152

Number	of	possible	hosts 16,777,214 65,534 254
	
	

Note								There	is	also	a	Class	D	which	is	used	for	multicast	and	a
Class	E	which	is	used	for	experimental	purposes.	We	will	not	go
into	further	detail	on	these	as	they	are	beyond	the	scope	of	this
book.
	

	
In	the	previous	diagram	you	can	see	that	Class	A	identifies	its	network	using	the
first	8	bits	(the	first	octet	or	1	byte)	as/for	the	network	mask.	We	use	the	subnet
mask	to	identify	which	portion	is	the	network	and	which	portion	is	the	host.	To
identify	the	network	portion	of	a	Class	A	address	we	need	to	use	all	of	the	bits	in
the	first	octet	of	the	subnet	mask,	this	results	a	subnet	mask	of	255.0.0.0	in
decimal.	This	may	also	be	displayed	by	using	a	so-called	prefix	of	/8	which
indicates	that	8	bits	are	used	to	identify	the	network	portion.	This	means	that	the
other	24	bits	are	used	for	the	host	portion.

	
Since	Class	A	ranges	from	00000000	to	01111111	in	binary	(for	the	first	octet),
which	is	0	to	127	in	decimal,	every	time	you	see	an	IP	address	that	begins	with
the	number	1	to	127,	you	know	it	is	a	Class	A	address.	Out	of	these	networks
there	are	actually	only	126	usable	networks.	An	address	that	starts	with	127	is
reserved	for	diagnostic	and	internal	purposes;	for	instance	the	IP	address
127.0.0.1	is	used	to	diagnose	the	local	TCP/IP	stack	and	if	you	can	successfully
ping	that	address,	then	the	local	TCP/IP	stack	is	working	properly.
	

Note								Ping	is	a	tool	that	all	computer	operating	systems
support	and	this	tool	sends	out	an	Internet	Control	Message
Protocol	(ICMP)	message	to	the	IP	address	you	defined.	If	you
get	a	response	from	the	destination	then	that	system	is	up	from	an
IP	perspective.	Unfortunately	some	Internet	Service	Providers	and
other	companies	may	choose	to	deny	ICMP	packets	so	when	you

are	trying	to	ping	those	systems	you	will	not	get	a	response.	But
that	does	not	mean	that	the	system	is	not	actually	up.
	

	
Even	though	you	can	only	have	126	available	Class	A	networks,	each	one	of
these	can	have	up	to	16,777,214	hosts	in	it.	As	Class	B	and	C	dedicate	more	bits
to	the	network	portion	a	wider	number	of	networks	are	available	but	a	lower
number	of	hosts	per	network.

	
This	is	a	balancing	act	to	be	performed	based	on	how	many	networks	and	hosts
you	need	in	any	particular	situation	and	in	each	case	the	subnet	mask	may	be
different.	This	is	the	key	feature	in	subnet	masking,	where	you	can	take	an	IPv4
address	network	(or	range)	and	subnet	it	into	smaller	networks.	This	will
increase	the	amount	of	networks	but	decrease	the	amount	of	hosts	per	network.
We	will	go	into	more	detail	on	how	subnetting	works	later	in	this	chapter.

	

Private	Addresses
The	Internet	Assigned	Numbers	Authority	(IANA)	has	assigned	special	networks
in	each	of	the	classes	which	can	be	used	for	addressing	within	private,	internal
networks	(rather	than	on	the	public	internet).	These	ranges	are	specified	in
RFC1918.	The	main	reason	for	this	is	that	the	number	of	available	public
(internet	routable)	networks	and	addresses	has	declined	significantly	as	more	and
more	people	and	companies	have	connected	to	the	internet.	Using	public
addresses	on	private	networks	is	a	great	waste	of	what	is	now	a	precious
resource.	Instead,	we	use	these	private	addresses	and	a	technology	called
Network	Address	Translation	(NAT)	to	translate	between	private	and	public
addresses	(typically	provided	by	an	ISP)	where	necessary,	when	connecting	to
the	internet.

	
Anyone	can	use	an	internal	private	network	range	and	addressing;	you	do	not
have	to	ask	for	permission	to	do	so	from	any	central	body.	Note	that	as	two	hosts
cannot	have	the	same	IP	address	on	a	network,	issues	can	occur	when	two
networks	that	happen	to	use	the	same	private	address	range	need	to	be
connected.	NAT	can	also	be	used	to	overcome	this	issue.

	
There	are	several	private	address	ranges,	one	for	each	address	class.	In	the
following	table	you	can	see	what	the	specified	networks	are	and	how	many	hosts
each	can	accommodate.	You’ll	note	the	class	B	and	C	ranges	have	a	subnet
mask/prefix	which	doesn’t	match	the	class;	this	is	because	multiple	networks	are
provided.	In	the	case	of	class	B,	16	classful	networks	are	provided:
172.16.0.0/16	through	to	172.31.0.0/16.	With	class	C	its	256:	192.168.0.0/24
through	to	192.168.254.0/24.

	

Class Network	Range Classful	Networks Hosts	per
network

Private	Class	A
range

10.0.0.0/8 1 16,777,214

Private	Class	B
range

172.16.0.0/12 16 65,534

Private	Class	C 192.168.0.0/16 256 254

http://tools.ietf.org/html/rfc1918

range
	

Note								IP	routing	is	a	critical	part	of	the	Internet	Protocol	and	it
is	responsible	for	ensuring	that	a	packet	gets	to	its	specified
location.	This	will	be	covered	in	detail	in	the	Switching	and
Routing	chapter.

	

Calculating	Networks	and	Hosts
You	now	understand	how	an	IP	address	is	comprised	of	a	network	portion	and
host	portion	and	that	the	number	of	networks	and	hosts	are	dependent	on	how
many	bits	you	use	for	each	portion.	Next,	we	need	to	be	able	to	calculate	how
many	networks	and	hosts	we	can	use	with	a	certain	number	of	bits.	By	being
able	to	calculate	this	we	can	allocate	network	ranges	(or	subnets)	that	are
suitable	for	our	needs.

	
To	simplify	this	for	mathematical	purposes	a	Class	C	network	will	be	used,	for
example	192.168.1.0.
	

Here	is	the	question:	“How	many	hosts	does	this	network	address	support?”.	It
is	actually	quite	simple.	We	know	that	an	IP	address	consists	of	32	bits	in	total.
A	Class	C	address	uses	24	bits	to	identify	the	network	portion	leaving	8	bits	to
identify	the	host	portion.	To	be	able	to	calculate	how	many	unique	IP	addresses
we	can	have	in	this	network,	we	use	the	following	equation:
	

2^X-2	(Where	X	indicates	the	number	of	host	bits	you	are	using.)
	

In	our	case	it	will	look	like	this:
	

2^8-2	=	254	hosts	(256-2)
	
The	reason	we	subtract	two	addresses	is	because	there	are	two	that	we	cannot
use.	The	IP	address	of	192.168.1.255	is	the	broadcast	address	and	the	address

192.168.1.0	is	the	network	address	and	these	cannot	be	assigned	to	a	host.

	

To	easily	identify	which	addresses	cannot	be	used	we	have	to	look	at	the	binary
value	of	an	IP	address.	When	the	host	portion	contains	only	00000000	(0	in
decimal)	or	11111111	(255	in	decimal)	the	address	cannot	be	used.	This
however	does	not	apply	to	every	address	because	when	we	look	closer	at
subnetting,	an	IP	address	can	contain	all	ones	or	zeroes	and	still	look	valid	and
not	end	in	either	0	or	255.	We	will	examine	this	later	in	this	chapter.
	

Here’s	a	reminder	of	how	we	calculate	the	decimal	figure	from	base	two:
	

	

In	case	you	are	wondering	why	subtracting	2	results	in	a	figure	of	254,
remember	that	0	is	also	considered	as	an	address.	A	decimal	value	of	255
represents	256	addresses:	0	through	to	255.
	
To	be	able	to	calculate	how	many	networks	we	get	from	a	certain	amount	of	bits
we	use	almost	the	same	equation.	If	we	want	to	know	how	many	networks	Class
B	supports	we	use	the	bits	of	the	network	portion	of	the	address	to	perform	the
calculation.	A	Class	B	uses	16	bits	to	identify	its	network	portion,	let	us	use	that
in	our	equation:

	
2^16	=	65536	networks

	
When	calculating	networks	we	do	not	remove	two	addresses	because	all	of	the
addresses	are	valid	network	addresses.	Remember	this	when	calculating	subnets.

	

Subnet	Masking

If	we	were	to	only	use	the	IP	addresses	in	a	specified	class	with	its	network
identifiers	and	host	identifiers	we	would	not	need	a	subnet	mask.	But	as	we
mentioned	before,	you	can	divide	a	single	address	range	into	multiple	subnets.
	

For	instance	if	you	were	to	use	a	Class	B	address,	its	default	subnet	mask	would
be	255.255.0.0	which	would	use	the	first	16	bits	for	networks	and	the	last	16	bits
for	hosts.	But	if	you	instead	use	a	subnet	mask	of	255.255.255.0	on	a	Class	B
address	you	would	dedicate	24	bits	to	the	network	portion	and	the	remaining	8
bits	to	the	host	portion.
	

By	borrowing	bits	from	the	host	portion	to	use	in	the	network	portions	you
decrease	the	amount	of	hosts	per	network	but	increase	the	amount	of	networks
you	can	use.	This	is	useful	when	you	want	to	divide	your	network	into	smaller
networks.	For	instance	you	could	divide	your	network	into	a	client	network,
server	network,	wireless	network	and	so	forth.	This	can	also	be	useful	for
security	reasons.
	

Variable	Length	Subnet	Masking	(VLSM)
Subnetting	using	the	standard	classes	is	quite	easy	to	understand.	However,	in
most	real	life	scenarios	you	don’t	subnet	using	class-standard	subnets	but
between	(or	within)	and	across	class	boundaries,	since	most	companies	are	not
assigned	a	Class	A	or	Class	B	address.	For	instance,	splitting	a	/24	subnets	into
two	sub-networks	or	combining	two	/24	subnets	into	a	larger	single	‘supernet’.
	

You	can	use	as	many	bits	of	the	host	portion	as	you	want	as	long	as	there	are
still	bits	left	to	represent	the	hosts.	Remember	the	equation	from	before.	For
instance,	in	the	scenario	where	we	only	reserve	1	bit	to	the	host	portion	the
equation	would	look	like	this:
	

2^X-2	(Where	X	indicates	the	number	of	host	bits	you	are	using.)
2^1-2=0
	

Note								The	reason	why	we	subtract	two	addresses	is	because
there	are	two	addresses	we	cannot	use.	The	IP	address	of
192.168.1.255	is	the	broadcast	address	and	the	IP	address
192.168.1.0	is	the	network	address	and	these	are	not	valid
addresses	for	hosts.

	
This	would	result	in	no	addresses	for	the	host	portion.

	
Now	let	us	look	at	how	we	use	this	method	on	a	Class	C	network	with	an	IP
address	of	192.168.1.0.	This	address	uses	24	bits	for	its	network	portion	(subnet
mask	255.255.255.0)	which	means	we	can	borrow	up	to	6	bits	from	the	host
portion	for	subnetting.

	
If	we	borrow	more	than	6	bits	from	the	host	portion	we	do	not	have	enough	bits
left	for	hosts.	If	we	borrow	all	6	bits	we	can	have	2	hosts	on	each	network	using
the	remaining	2	bits.

	
For	the	purposes	of	this	example	we	will	‘borrow’	4	bits.	In	binary	the	subnet
mask	will	now	look	like	this:
	

11111111.11111111.11111111.11110000
	

This	results	in	a	decimal	value	of	255.255.255.240	(the	decimal	value	of
11111111	is	255;	the	decimal	value	of	11110000	is	240)	and	a	prefix	of	/28.
	

Since	we	borrowed	4	bits	from	the	host	portion	to	use	in	the	network	portion,
how	many	networks	can	we	now	have?	Let	us	look	at	the	usual	equation	again:
	
2^4	=	16

	
In	order	to	calculate	how	many	hosts	this	will	support	per	network,	we	use	the

following	equation:

	

2^4-2	=	14
	

All	right!	So	we	now	have	16	subnets	and	each	can	have	14	hosts.	Now	we	need
to	calculate	each	network	and	available	host	IP	addresses.	We	do	this	by
identifying	the	first	available	network:	the	subnetted	IP	address	192.168.1.0/28.
	

	

The	borrowed	bits	part	indicates	the	octet	from	which	we	borrowed	4	bits	and
they	are	highlighted	in	the	red	color.	You	can	see	that	there	are	four	remaining
bits,	these	are	the	bits	that	we	have	left	for	hosts.
Next,	you	can	see	some	of	the	available	networks	we	have	created	by	borrowing
4	bits	from	the	host	portion:

	

	

This	list	continues	until	all	of	the	4	bits	have	been	turned	on	which	gives	the
binary	value	1111.	Now	we	know	what	network	addresses	we	can	use,	let’s	take
a	closer	look	at	one	of	them	and	calculate	the	host	address	range.
	

To	simplify	things,	let’s	use	the	first	network	address	which	is	192.168.1.0.
	

	

As	we	said	before,	we	cannot	use	a	host	portion	that	contains	all	ones	or	zeroes
because	these	are	not	valid	addresses.	Therefore	the	first	active	address	would	be
the	first	bit	in	the	host	portion:
	

	

This	is	our	first	host	address	in	this	subnet	and	it	results	in	the	IP	address	of
192.168.1.1.	To	be	able	to	identify	the	last	host	address	we	have	to	turn	on	all
bits	except	the	last	one	because	this	is	the	broadcast	address.

	
Therefore	the	last	address	would	be	192.168.1.14	so	the	address	range	would	be
192.168.1.1	to	192.168.1.14.

	
Here	is	a	collection	of	all	the	subnets	with	their	host	address	range	and	subnet
mask:

	

Subnet Subnet	mask Host	address	range
192.168.1.0 255.255.255.240 192.168.1.1	-	192.168.1.14
192.168.1.16 255.255.255.240 192.168.1.17	-	192.168.1.30
192.168.1.32 255.255.255.240 192.168.1.33	-	192.168.1.46
192.168.1.48 255.255.255.240 192.168.1.49	-	192.168.1.62
192.168.1.64 255.255.255.240 192.168.1.65	-	192.168.1.78
192.168.1.80 255.255.255.240 192.168.1.81	-	192.168.1.94
192.168.1.96 255.255.255.240 192.168.1.97	-	192.168.1.110
192.168.1.112 255.255.255.240 192.168.1.113	-

192.168.1.126
192.168.1.128 255.255.255.240 192.168.1.128	-

192.168.1.142
192.168.1.144 255.255.255.240 192.168.1.145	-

192.168.1.158
192.168.1.160 255.255.255.240 192.168.1.161	-

192.168.1.174
192.168.1.176 255.255.255.240 192.168.1.177	-

192.168.1.190
192.168.1.192 255.255.255.240 192.168.1.193	-

192.168.1.206
192.168.1.208 255.255.255.240 192.168.1.209	-

192.168.1.222
192.168.1.224 255.255.255.240 192.168.1.225	-

192.168.1.238
192.168.1.240 255.255.255.240 192.168.1.241	-

192.168.1.254
	

Exam	Tip								It	is	really	important	to	know	how	to	calculate	IP
addresses	and	subnets	and	to	be	able	to	know	how	many	networks
and	hosts	you	can	use	with	a	particular	subnet	mask.	Practice	this
until	you	fully	understand	it.

	

Classless	Inter-Domain	Routing	(CIDR)
When	address	classes	were	introduced,	organizations	would	get	assigned	one	or
several	IP	addresses	from	one	of	the	different	classes	by	their	Internet	Service
Provider	(ISP).	This	meant	that	you	could	get	a	class	A,	B	or	C	address	range
and	you	would	only	work	within	that	class	and	not	subnet	beyond	it.	For	many
companies,	this	was	a	real	waste	of	IP	addresses	because	companies	and
organizations	would	receive	a	very	large	network	address	range	that	could
contain	a	large	amount	of	hosts	and	they	did	not	have	anywhere	near	that	amount
of	hosts	in	their	network.	For	instance	if	a	large	company	was	assigned	a	class	A
address	they	would	be	able	to	use	16.7	million	addresses	but	would	perhaps	only
need	as	few	as	100,000.

	
Therefore	CIDR	was	introduced.	As	shown	previously,	we	can	subnet	our
networks	exactly	as	we	want	to.	You	can	use	a	class	A	address	range	with	any
mask	of	our	choosing,	10.0.0.0/24	for	instance.	We	are	no	longer	limited	to
using	the	class	defined	mask;	in	short,	CIDR	makes	it	possible	to	subnet	beyond
the	standard.

	

Broadcast	Addresses
As	we’ve	already	discussed,	a	broadcast	address	is	an	address	that	targets	all
systems	on	a	specified	network	instead	of	just	a	single	host.	There	is	a	relatively
easy	way	to	calculate	what	the	broadcast	address	of	a	network	is.

	
One	method	commonly	used	is	a	bitwise	OR	calculation	which	uses	a	reversed
subnet	mask.	The	reverse	mask	is	the	subnet	mask	but	with	the	host	bits	all
turned	on	rather	than	the	network	bits.	If	a	system	has	the	IP	address	of
192.168.1.240	and	it	uses	the	subnet	mask	255.255.255.0	then	what	is	the
broadcast	address	of	the	system?	To	find	this	we	have	to	convert	the	IP	address
into	a	binary	format	and	then	use	the	bitwise	OR	calculation.	This	works	by
comparing	the	reverse	mask	bits	with	the	IP	address	bits;	when	at	least	one	of
the	two	bit	values	is	set	to	1,	the	results	will	be	1.	Anything	else	will	be	a	0.

	

	
Convert	the	binary	values	to	decimal	and	you	have	the	resulting	broadcast
address	of	192.168.1.255.

	
We	can	apply	this	method	to	any	IP	address	and	subnet	mask.	Next	is	an
example	of	using	192.168.1.35/27	(subnet	mask	255.255.255.224);
	

	

Fragmentation
When	a	host	sends	an	IP	packet	onto	the	network	it	cannot	be	larger	than	a
certain	size.	The	size	of	the	packet	is	determined	by	the	Maximum	Transmission
Unit	(MTU)	and	this	is,	by	default,	set	to	1500	bytes.	We’ll	cover	MTU	in	detail
in	the	next	chapter.

	
Should	a	packet	of	this	maximum	size,	being	routed	between	two	hosts,
encounter	a	network	with	a	lower	MTU,	we	need	to	break	it	into	pieces
(fragments)	that	are	equal	to	or	smaller	than	the	lower	MTU	before	we	can	route
it	across	that	network.	This	is	called	Fragmentation,	which	is	one	of	the
functions	of	the	IP	protocol.

	
It	is	important	to	know	that	the	fragments	are	not	reassembled	into	their	original
state	until	they	reach	their	final	destination.

The	TCP	protocol	is	covered	in	detail	in	the	Transport	Layer	chapter	following
this	one.
	

To	be	able	to	identify	each	packet	at	the	receiving	end,	the	sending	host	marks
each	packet	with	an	ID	called	the	fragmentation	ID.	The	fragmentation	ID	is
actually	a	copy	of	the	ID	field	(IP	identification	number)	that	is	located	in	the	IP
header.
	
There	are	three	essentials	pieces	of	information	used	to	enable	IP	Fragmentation;
each	fragment	must	carry	its	“position”	or	“offset”,	it	must	state	the	length	of	the
data	that	it	is	carrying	and	finally	whether	there	are	more	fragments	coming.	The
packet	uses	the	more	fragments	(MF)	flag	to	indicate	this.

	

Time	to	Live	(TTL)
There	are	many	instances	where	a	network	can	be	misconfigured	or	routing
protocols	fail	for	some	reason	and	routing	loops	occur.	Here’s	a	very	basic
example	of	a	static	routing	misconfiguration	that	causes	a	rooting	loop;

	

	
A	SYN	packet	destined	for	address	10.11.1.99	is	sent	by	the	host	to	its	default
gateway,	which	is	router	A.	Router	A	is	configured	with	a	static	route	specifying
packets	for	the	10.11.1.0/24	network	should	be	routed	to	router	B	at
192.168.32.2.	Router	B	is	misconfigured	with	a	static	route	specifying	packets
for	the	10.11.1.0/24	network	should	be	routed	back	to	router	A	at	192.168.32.1.

	
The	packet	would	then	be	endlessly	routed	back	and	forth	between	routers	A	and
B,	consuming	bandwidth	and	both	memory	and	CPU	resources.	When	other
packets	are	sent	(retries	for	instance)	the	number	of	packets	looping	between	the
routers	grows	and	eventually	one	or	both	routers	will	fail.

	
To	prevent	this,	all	packets	have	a	TTL	value	which	specifies	a	maximum
number	of	layer	three	hops	(typically	routers)	that	can	be	traversed	by	that
packet	on	the	way	to	the	final	destination.	Each	time	the	packet	passes	through	a

layer	three	network	device	(a	hop)	the	TTL	value	is	decreased	by	one.	When	the
TTL	value	eventually	reaches	one	the	packet	is	dropped	by	the	device	that
receives	it.	Whilst	this	doesn’t	remove	the	routing	loop	it	reduces	its	impact	and
avoids	router	failures.
	

This	device	may	then	also	send	an	ICMP	message	back	to	the	originating	host
saying,	destination	host	unreachable.	This	alerts	the	sending	host	that	something
has	gone	wrong.
	

The	default	TTL	value	varies	between	different	operating	systems.
	

TCP/IPv6
One	of	the	problems	with	IPv4	is	that	publicly	available	addresses	are	starting	to
run	out.	Different	technologies	have	been	invented	to	slow	this	process	down
(CIDR	and	NAT	for	instance)	but	in	the	long	run	we	need	an	IP	address	space
which	is	much	larger.

	
IP	Version	6	is	the	solution	to	this	problem;	with	its	128-bit	address	length,	you
have	2^128	possible	addresses	available.	This	is	a	total	of
340,282,366,920,938,463,463,374,607,431,768,211,456	addresses.	This	number
of	available	addresses	is	staggering	and	can	be	quite	hard	to	comprehend.	To
simplify,	this	means	that	you	can	give	multiple	addresses	to	every	grain	of	sand
that	exists	on	the	entire	planet.

	
Implementing	this	new	IP	version	is	a	tough	task	since	old	hardware	and
software	often	does	not	support	it.	You	may	have	to	invest	in	new	equipment
that	many	feel	gives	them	nothing	in	return.	You	have	already	got	a	functioning
IPv4	network	and	IPv6	will	not	enhance	your	network	in	any	way.	It	really	just
adds	support	for	those	who	cannot	obtain	an	IPv4	address.

	
This	has	been	the	main	problem	with	IPv6	and	the	reason	why	it	is	taking	such	a
long	time	for	everyone	to	implement	it	(it	has	been	around	for	over	15	years
now).	Companies	need	to	throw	out	or	upgrade	their	old	equipment	and	invest	in
new	IPv6	equipment	and	for	many	this	can	be	a	very	expensive	investment.

	
There	are	however	some	technologies	that	can	translate	an	IPv6	address	to	an
IPv4	address	and	vice	versa	allowing	the	two	versions	to	co-exist	and	negating
the	need	for	a	wholesale	‘rip	and	replace’	approach.	The	implementation	of	IPv6
has	started	to	expand	because	of	this	(among	other	reasons).	For	instance,	in
Sweden	many	government	agencies	have	implemented	IP	v6	and	all	of	them	are
recommended	to	use	it	by	the	end	of	2013,	by	a	board	called	Board	of	Mail	and
Tele	or	the	PTS	(Post	och	Tele-styrelsen).	Some	government	agencies	were	able
to	achieve	the	goal	but	unfortunately	not	all	of	them.	The	PTS	has	not	published
further	recommendations	as	of	this	book’s	writing

	
The	PTS	argument	for	implementing	IPv6	is	to	invest	in	the	future	of	the	internet
because	we	need	to	be	able	to	communicate	with	countries	where	they	use	IPv6
addressing	at	a	large	scale.

	

Type	of	address Description
Global	unicast
address

These	addresses	are	used	on	the	internet	and	are
routable.	They	are	similar	to	the	IPv4	public	addresses
in	use	today.

Link-local
address

These	addresses	are	similar	to	the	private	addresses	used
in	IPv4	(10.0.0.0/8	etc.)	They	are	not	routable	on	the
internet	and	are	intended	to	be	used	within	internal,
private	networks.

Unique	local
address

These	are	also	used	for	private	addressing	but	they	are
unique	so	that	joining	two	networks	together	will	not
cause	a	collision

Special
addresses

These	are	similar	to	loopback	addresses	but	are	also
used	for	6-to-4	addresses	for	crossing	from	an	IPv4	to	an
IPv6	network	and	IPv4-address	mapped	spaces.

Different	IPv6	Addresses
Unicast	Addresses
These	addresses	provide	one-to-one	transmission	services	to	individual
interfaces.	This	includes	server	farms	that	share	a	single	address.	IPv6	supports
many	different	unicast	addresses	which	includes	global,	link-local	and	unique
local.
	

	

Multicast	Addresses
Instead	of	flooding	the	network	with	broadcasts,	each	packet	is	sent	to	specified
members	of	a	multicast	group,	as	is	the	case	with	IPv4.

	
	

	

Anycast	Addresses
This	address	type	was	a	late	addition	to	IPv4	and	is	typically	only	implemented
in	relation	to	DNS	with	v4.	Anycast	addresses	have	a	single	address	that	can	be
assigned	to	multiple	(normally	geographically	dispersed)	hosts.	This	provides

both	location	aware	load-balancing	and	automatic	failover.

	

The	Structure	of	an	IPv6	Address
The	structure	of	an	IPv6	address	is	a	bit	different	from	an	IPv4	address.	First	of
all	it	is	represented	in	a	hexadecimal,	colon	separated	address	format	(similar	to
a	MAC	address)	instead	of	the	decimal,	period	(or	dot)	separated	format.
Secondly,	it	is	a	lot	longer	than	an	IPv4	address	and	has	eight	16-bit	sections
instead	of	four	8-bit	sections.	The	good	news	is	that	it	can	be	shortened.

	
The	IPv6	address	is	split	up	into	three	parts,	the	network	identifier,	the	subnet
and	the	interface	identifier.	If	you	are	using	a	global	unique	address	you	will
most	likely	receive	addresses	from	your	Internet	service	provider.

	

	
The	global	prefix	is	the	part	you	receive	from	your	Internet	service	provider	and
the	subnet	and	interface	ID	are	set	by	the	network	administrator.

	

The	Loopback	Address
The	loopback	address	or	localhost	address	in	IPv6	is	as	follows:

	
0000:0000:0000:0000:0000:0000:0000:0001
	

Since	this	is	lengthy	to	write	you	can	reduce	the	written	size	by	representing	one
or	more	(if	adjacent)	group	of	four	zeros	with	a	double	colon	instead.	You	can
only	do	this	once	with	any	single	IPv6	address.	This	shortens	the	address	and
makes	it	much	easier	to	write.	So	the	loopback	address	will	look	like	this:
	

::1

	
It	is	also	possible	to	remove	every	leading	zero	in	any	16	bit	block	wherever
they	appear.	Here	is	one	example:

	
2001:db8:00AC:F42C:00C4:F42C:09C0:876A:130B

	
Can	be	truncated	and	written	as	follows;

	
2001:db8:AC:F42C:C4:F42C:09C0:876A:130B

	
Here	are	some	more	examples:
	

Full	address Shortened	address
2001:0db8:3c4d:0015:0:0:abcd:ef12 2001:0db8:3c4d:15::abcd:ef12
0000:0000:0000:0000:0000:0000:0000:0001 ::1
0000:0000:0000:0000:0000:0000:0000:FFFF ::FFFF

	
There	are	no	subnet	masks	in	IPv6	so	they	use	the	same	prefix	(slash)	notation	as
CIDR	to	identify	which	bits	are	used	for	the	network	portion,	for	instance;

	
2001:0db8:3c4d:15::abcd:ef12/64

	
That	is	the	shortened	version	of	the	following	IPv6	address:
	

2001:0db8:3c4d:0015:0:0:abcd:ef12/64
	

Chapter	Summary
An	IP	address	is	a	logical	address	as	opposed	to	a	MAC	address	which	is
physical.	This	means	that	it	is	not	uniquely	assigned	by	the	IEEE	and	can
be	changed.
	
IP	addresses	are	divided	into	several	different	classes.	These	classes
specify	what	part	of	the	IP	address	identifies	the	network	and	host	portions.
The	most	common	classes	are	A,	B	and	C.
	
A	broadcast	address	is	an	address	that	targets	all	systems	on	a	specified
subnet	instead	of	just	a	single	host.
	
The	loopback	address	or	localhost	address	in	IPv6	is	::1

	

Chapter	Exercises
Here	you	will	find	various	IP	calculation	exercises	that	will	give	you	a	greater
understanding	of	calculating	IP	addresses.

	

Decimal	and	Binary	Conversions
1.	 Complete	the	table.	It	will	provide	you	with	practice	in	converting	a	binary

number	into	a	decimal	format
	

Binary 128 64 32 16 8 4 2 1 Decimal
10110101 1 0 1 1 0 1 0 1 128+32+16+4+1	=	181
11001101 	 	 	 	 	 	 	 	 	
01001101 	 	 	 	 	 	 	 	 	
11101011 	 	 	 	 	 	 	 	 	
10100011 	 	 	 	 	 	 	 	 	

	
2.	 Complete	the	table.	It	will	provide	you	with	practice	in	converting	a	binary

number	into	a	decimal	format
	

Decimal 128 64 32 16 8 4 2 1 Binary
125 0 1 1 1 1 1 0 1 125-64-32-16-8-4-1	=	0	|

01111101
91 	 	 	 	 	 	 	 	 	
192 	 	 	 	 	 	 	 	 	
112 	 	 	 	 	 	 	 	 	
250 	 	 	 	 	 	 	 	 	

	

3.	 Express	the	IP	address	174.54.21.6	in	binary	format	and	identify	which
address	class	it	belongs	too.
	

4.	 Express	the	IP	address	212.126.47.98	in	binary	format	and	identify	which
address	class	it	belongs	too.
	

Subnetting

1.	 You	have	been	assigned	the	network	block	192.168.1.0/24.	Now	you	want
to	split	this	network	into	several	networks	each	containing	at	least	14	hosts.
How	many	bits	will	you	need	to	borrow	from	the	host	portion?
	

2.	 You	have	been	assigned	the	network	block	170.23.0.0/16	and	you	need	to
create	eight	subnets.	Answer	the	following	questions:
	
a.	 How	many	bits	do	you	need	to	borrow	from	the	host	portion	to	create

8	subnets?
	

b.	 Specify	the	extended	network	prefix	you	need	to	use	to	create	8
subnets.

	
c.	 Express	the	network	addresses	of	the	subnets	you	created.

	

Chapter	Exercises	–	Answers
Here	you	will	find	the	answers	to	the	exercises.

	

Decimal	and	Binary	Conversions
1.	 Complete	the	table.	It	will	provide	you	with	practice	in	converting	a	binary

number	into	a	decimal	format
	

Binary 128 64 32 16 8 4 2 1 Decimal
10110101 1 0 1 1 0 1 0 1 128+32+16+4+1	=	181
11001101 1 1 0 0 1 1 0 1 128+64+8+4+1	=	205
01001101 0 1 0 0 1 1 0 1 64+8+4+1=	77
11101011 1 1 1 0 1 0 1 1 128+64+32+8+2+1	=	235
10100011 1 0 1 0 0 0 1 1 128+32+2+1	=	163
	
2.	 Complete	the	table.	It	will	provide	you	with	practice	in	converting	a	binary

number	into	a	decimal	format
	

Decimal 128 64 32 16 8 4 2 1 Binary
125 0 1 1 1 1 1 0 1 125-64-32-16-8-4-1	=	0	|

01111101
91 0 1 0 1 1 0 1 1 91-64-16-8-2-1	=	0	|

01011011
192 1 1 0 0 0 0 0 0 192-128-64	=	0	|

1100000000
112 0 1 1 1 0 0 0 0 112-64-32-16	=	0	|

01110000
250 1 1 1 1 1 0 1 0 250-128-64-32-16-8-2	=	0	|

11111010
	
3.	 Express	the	IP	address	174.54.21.6	in	binary	format	and	identify	which

address	class	it	belongs	too

10101110.00110110.00010101.00000110	/16	or	Class	B

	
It	belongs	to	the	Class	B	address	because	the	first	octet	starts	with	10.

	
4.	 Express	the	IP	address	212.126.47.98	in	binary	format	and	identify	which

address	class	it	belongs	too.

11010100.01111110.00101111.01100010	/24	or	Class	C
	
It	belongs	to	the	Class	B	address	because	the	first	octet	starts	with	110.

	

Subnetting
1.	 You	have	been	assigned	the	network	address	192.168.1.0/24.	Now	you

want	to	split	this	network	into	several	networks	each	containing	at	least	14
hosts.	How	many	bits	do	you	need	to	borrow	from	the	host	portion?

	
Since	you	have	been	assigned	a	network	with	a	24	bit	subnet	mask	this
leaves	only	8	bits	left	for	the	host	portion.	In	order	to	obtain	14	hosts	on
each	network	you	need	to	borrow	4	bits.	This	is	because	2^4-2	=	14.	This
will	change	the	subnet	mask	from	/24	to	/28	instead	and	you	will	have	16
networks	with	each	network	containing	14	hosts.

	
2.	 You	have	been	assigned	the	network	block	170.23.0.0/16	and	you	need	to

create	eight	subnets.	Answer	the	following	questions:
	
	
a.	 How	many	bits	do	you	need	to	borrow	from	the	host	portion	to	create

8	subnets?
We	need	to	borrow	three	bits	in	order	to	create	eight	subnets	because
2^3	=	8.

	
b.	 Specify	the	extended	network	prefix	you	need	to	use	to	create	8

subnets.

We	can	express	this	using	two	methods	and	that	is	/19	or
255.255.224.0
	

c.	 Express	the	network	addresses	of	the	subnets	you	created.

Subnet
Number

Network
Address

Binary	value

Subnet	#0 170.23.0.0/19 10000100.00101101.00000000.00000000
Subnet	#1 170.23.32.0/19 10000100.00101101.00100000.00000000
Subnet	#2 170.23.64.0/19 10000100.00101101.01000000.00000000
Subnet	#3 170.23.96.0/19 10000100.00101101.01100000.00000000
Subnet	#4 170.23.128.0/19 10000100.00101101.10000000.00000000
Subnet	#5 170.23.160.0/19 10000100.00101101.10100000.00000000
Subnet	#6 170.23.192.0/19 10000100.00101101.11000000.00000000
Subnet	#7 170.23.224.0/19 10000100.00101101.11100000.00000000
	

Chapter	Review
In	order	to	test	your	knowledge	and	understanding	of	this	chapter,	please	answer
the	following	questions.	You	will	find	the	answers	and	explanations	of	the
questions	at	the	end	of	this	chapter.

	
1.	 How	many	hosts	can	a	Class	C	network	contain?

	
a.	 254
b.	 16,384
c.	 65,534
d.	 255

	
2.	 How	many	bits	does	an	IP	address	consist	off?

	
a.	 24	bits
b.	 32	bits
c.	 48	bits
d.	 64	bits

	
3.	 What	does	MTU	stand	for?

	
a.	 Maximum	Transfer	Unit
b.	 Maximum	Transmission	Unit
c.	 MAC	Transmission	Unit
d.	 Minimum		Transmission	Unit

	

4.	 Which	of	the	following	subnet	masks	would	you	use	when	configuring	a
client	with	an	IP	address	in	the	network	address,	192.168.1.0/26?
	
a.	 255.255.255.0
b.	 255.255.255.128
c.	 255.255.255.192
d.	 255.255.0.0

	

Chapter	Review:	Answers
You	will	find	the	answers	to	the	chapter	review	questions	below:

	
1.	 The	correct	answer	is:	A

	
a.	 254
b.	 16,384
c.	 65,534
d.	 255

	
The	correct	answer	is	A	because	you	use	8	bits	for	the	host	portion.	When	using
the	formula	2^X-2	(where	X	is	the	number	of	bits)	you	get	the	value	of	254.	2^8-
2	=	254

	
2.	 The	correct	answer	is:	B

	
a.	 24	bits
b.	 32	bits
c.	 48	bits
d.	 64	bits

	

The	correct	answer	is	B	because	the	IP	address	is	built	up	by	4	octets	and	each
octet	contains	8	bits.	8*4	=	32.	48	bits	are	used	in	the	MAC	address.

	
3.	 The	correct	answer	is:	B

	
a.	 Maximum	Transfer	Unit
b.	 Maximum	Transmission	Unit
c.	 MAC	Transmission	Unit
d.	 Minimum		Transmission	Unit

	

4.	 The	correct	answer	is:	C
	

a.	 255.255.255.0
b.	 255.255.255.128
c.	 255.255.255.192
d.	 255.255.0.0

	

We	use	26	bits	for	the	network	portion	of	the	address	which	means	that	we	need
to	borrow	two	bits	from	the	last	octet.	The	first	two	bits	of	the	last	octet
represent	the	values	128	and	64.	Add	these	together	and	you	get	the	value	of
192.
	

6.	The	Transport	Layer	in	Detail
	

When	discussing	computer	networking,	many	people	tend	to	associate	it	with	the
TCP/IP	protocol.	We	have	already	talked	about	the	IP	part	of	the	protocol	suite
(which	operates	at	the	lower	network	layer)	and	its	importance;	now	it’s	time	to
talk	about	TCP	and	other	protocols	that	are	a	part	of	the	transport	layer.
	

When	one	compares	the	network	layer	to	the	transport	layer,	you	can	say	that	the
network	layer	provides	the	essential	components	to	make	it	possible	for	two
hosts	on	different	networks	to	communicate.	The	transport	layer	on	the	other
hand	provides	optional	functions	that	help	achieve	a	required	quality	of
communication.	Some	of	these	functions	are	to	make	sure	that	the	packet	arrives
at	its	destination,	that	the	packet	is	not	exceeding	a	suitable	size	and	that	the
packets	are	exchanged	at	a	speed	that	both	hosts	can	handle.	Every	type	of
service	has	its	specified	requirements	in	order	to	perform	at	its	best.	This	means
that	you	will	use	different	types	of	transport	protocols	depending	on	your	needs
(or	the	application’s).
	

Transmission	Control	Protocol	–	TCP
TCP	is	a	connection-oriented	protocol	that	provides	features	like	flow	control
and	reliable	data	delivery,	which	overcomes	issues	such	as	packet	loss	and
communication	errors.	TCP	works	very	differently	from	the	protocol	UDP
which	is	a	connection-less	protocol;	we’ll	go	into	further	detail	on	how	UDP
works	shortly.

	
The	application	sends	its	data	down	the	OSI	model	to	the	transport	layer	which
encapsulates	the	data	within	a	TCP	Header.	Very	often	the	application	layer	will
send	data	that	is	bigger	than	a	single	packet	can	carry;	TCP	will	therefore	split	it
up	into	smaller	pieces	called	segments.	A	collection	of	segments	that	travel	over
the	same	connection	is	called	a	sequence.

	
TCP	adds	a	separate	TCP	header	to	each	segment,	which	it	sends	down	to	the
appropriate	network	layer	protocol	(in	this	case	IP).	Each	TCP	header	contains
specific	information	like	a	source	and	destination	port	and	a	sequence	number
that	specifies	where	the	segment	is	within	the	sequence.	That	way	the	receiving
host	knows	the	correct	order	of	the	segments	it	receives	and	can	reassemble	the
data	within	them	successfully	when	the	transfer	is	complete.

	
A	diagram	illustrating	the	TCP	header	and	its	fields	follows:

	

	

We’ll	explore	the	purpose	of	some	of	these	headers	over	the	course	of	this
chapter.
	

Option
Kind

Option	Name Description

0 End	Of	Options
List

When	using	multiple	TCP	options,
this	Option	Kind	indicates	the	end
of	the	options	field.

2 Maximum
Segment	Size

Specifies	the	largest	segment	a
host	can	receive

8 TSOPT	–
Timestamp

Adds	time	stamps	to
acknowledgment	packets	in	order
to	measure	the	round	trip	time
between	two	hosts

TCP	Options
In	the	previous	diagram	you	can	see	that	there	is	a	header	field	which	is	called
Options.	This	field	provides	extra,	optional	functionality	to	the	TCP	protocol	and
contains	the	following	fields;

	
Option	Kind
Option	Length
Option	Data

	
Following	you	will	find	the	most	commonly	used	TCP	Options:

	
	

Exam	Tip								You	do	not	have	to	memorize	all	possible	TCP
Options	but	you	need	to	understand	what	Options	are	used	for.

	 	
	

The	Three	Way	Handshake	(3WHS)
As	we	mentioned	before,	TCP	is	a	connection-oriented,	reliable	protocol	which
means	that	in	order	for	it	to	send	packets	between	hosts,	they	have	to	establish	a
connection	with	each	other.	This	is	called	a	TCP	Session.

	
In	a	TCP	session,	every	packet	that	is	sent	between	each	host	is	assigned	a
sequence	number.	An	Acknowledgement	or	ACK	has	to	be	sent	each	time	a
system	successfully	receives	a	packet.	If	the	sending	system	does	not	receive	an
ACK	from	the	receiving	one,	the	packet	is	resent.

	

Note								Extensions	exist	to	modify	this	ACK-per-packet
behavior	but	right	now	we	are	only	considering	TCP’s	default,	un-
extended	behavior.
	

	

In	order	to	establish	a	TCP	session,	the	hosts	both	have	to	participate	in	a
process	called	The	Three-Way-Handshake.
	

1.	 The	initiating	host	sends	a	TCP	packet	called	a	SYN	packet.	With	this
packet	the	host	is	requesting	a	new	session	with	the	target	host.	This	SYN
packet	contains	an	initial	sequence	number	and	other	information	such	as
the	maximum	segment	size	(MSS)	which	we’ll	explore	shortly.
	
	

2.	 The	target	host	sends	back	a	SYN/ACK.	The	SYN/ACK	packet	contains
the	initiating	host’s	sequence	number	plus	1.	This	has	to	be	done	in	order
to	prove	that	it	has	received	the	initiating	host’s	first	packet.

	
3.	 The	initiating	host	then	responds	to	the	SYN/ACK	packet	that	the	target

host	sent	by	sending	a	final	ACK	packet	with	the	target	host’s	sequence
number	plus	1.	That	way	the	target	host	can	confirm	the	initiating	host	has
successfully	received	the	packet.
	

	

Note								The	packets	in	the	Three	Way	Handshake	are	simply
empty	packets	with	the	different	TCP	control	bits	activated.	There
are	several	different	control	bits	other	than	SYN	and	ACK,	as
we’ll	see	soon.
	

	

The	whole	process	is	shown	in	the	following	diagram:
	

	

When	both	hosts	know	which	sequence	numbers	they	will	use,	the	session	is
established	and	they	can	start	transferring	data.
	

There	is	a	similar	process	when	TCP	Sessions	are	terminated.	Using	this	method
ensures	that	both	systems	have	completed	their	transactions.	This	process	is
shown	in	the	following	diagram:
	

	

User	Datagram	Protocol	–	UDP
Unlike	TCP,	the	UDP	is	a	connectionless	protocol	and	provides	no	optional
functions	that	will	enhance	the	quality	of	the	communication.	The	UDP	packets
can	arrive	out	of	order	or	not	at	all	and	UDP	will	not	correct	the	order	or	request
new	packets.	The	reason	we	call	this	type	of	protocol	connectionless	is	because
the	hosts	do	not	established	a	connection	with	each	other	in	advance	of	sending
data	and	the	state	of	the	connection	is	not	maintained.

	
There	are	no	fields	in	the	UDP	header	that	contain	information	regarding	which
order	the	preceding	or	following	packet	will	arrive	in.	It	can	be	compared	to
sending	a	letter.	You	write	the	letter	(the	data	you	are	sending)	and	you	put	it	in
an	envelope	(the	UDP	packet).	Then	you	specify	the	recipient	address
(destination	address	and	port)	and	the	return	address	(the	source	address	and
port).	You	have	no	idea	if	the	letter	has	been	received	and	if	you	send	another
letter	the	day	after,	that	letter	may	be	received	before	the	first	one.

	
One	question	you	might	ask	is	why	would	you	use	a	protocol	like	this?	Even
though	UDP	has	no	control	over	packet	order	or	loss,	there	are	scenarios	where
this	is	useful.	UDP	is	simpler	and	thus	can	be	processed	by	hosts	at	higher
performance	rates	than	TCP.	This	simplicity	can	also	provide	speed	benefits	as
there	is	no	initial	delay	experienced	as	there	is	with	TCP,	where	a	connection
must	be	established	before	data	is	sent.	For	this	reason,	frequent	used,	relatively
simple	application	layer	protocols	such	as	DNS	use	UDP	as	a	transport.

	

Note								DNS	can	also	be	used	over	TCP;	however,	it	is	not	as
prevalent.
	

	

Another	situation	could	be	if	you	send	information	that	would	be	considered	old
if	it	arrived	after	a	newer	packet	arrived.	Examples	of	this	are	voice,	video
streaming,	gaming	and	weather	data	–	in	other	words,	time	sensitive	traffic.
	
Following	you	will	find	a	diagram	of	the	UDP	header:

	

	

Exam	Tip								Just	like	the	TCP	header,	you	do	not	have	to
remember	what	fields	comprise	the	UDP	header.

	

TCP	Device	Communications
When	the	TCP	three-way-handshake	is	complete	and	the	hosts	have	established
a	connection,	the	following	information	is	known	by	both	systems:

	
Port	number	–	which	port	each	host	will	use.	We’ll	cover	this	in	this
chapter.
	
Sequence	number	–	each	host	uses	the	other’s	sequence	number	when
acknowledging;	confirming	that	the	packet	has	been	received.

	
MSS	–	the	maximum	segment	size	of	the	packets	sent	between	hosts.

	
The	sequence	and	acknowledgment	number	fields	form	the	core	of	reliable
delivery	in	TCP.	Since	the	hosts	know	the	sequence	number	they	last	sent	they
also	know	the	acknowledgment	number	they	should	receive	next.

	
For	example,	if	the	sending	host	sends	a	packet	with	the	sequence	number	99,	it
knows	that	it	needs	to	receive	an	acknowledgment	number	100.	If	the	sending
host	does	not	receive	an	acknowledgement	of	100	it	will	retransmit	the	packet
with	the	sequence	number	of	99.	This	is	known	as	Retransmission,	discussed
next.

	

Retransmission
TCP	is	responsible	for	providing	reliable	data	transfers	between	hosts.	There	are
two	common	problems	that	can	occur	during	a	TCP	connection;	packets	can	fail
to	arrive	or	may	arrive	but	in	a	corrupted	state.

	
When	a	host	fails	to	receive	an	ACK	for	a	packet	it	has	sent,	it	triggers	a
retransmission	and	no	further	data	is	sent.	If	an	ACK	still	isn’t	received	further
retransmissions	occur;	how	many	and	the	interval	between	them	depends	on	the
host’s	configuration.	If	this	occurs	over	an	extended	period	of	time,	the	TCP
connection	will	eventually	time	out	and	has	to	be	re-established	(if	possible).
This	process	ensures	the	sending	host	can	be	certain	of	what	data	the	receiving
end	has	received	and	what	it	has	not,	regardless	of	network	conditions	and
reliability.

	
To	ensure	packets	are	not	corrupted	in	transit,	before	a	host	sends	a	packet,	it
performs	a	Cyclic	Redundancy	Check	or	CRC	calculation	on	it	and	saves	the
resulting	value	in	the	packet’s	footer.	When	a	host	receives	the	packet,	it
compares	the	results	of	its	own	CRC	calculation	on	each	packet	with	the	value	in
the	footer.	If	the	two	values	do	not	match	the	packet	is	discarded	and	a	new	one
requested.

	

MTU	&	MSS
This	isn’t	an	easy	subject,	it	crosses	the	boundaries	between	three	layers	of	the
OSI	model;	data	link,	network	and	transport,	which	can	be	confusing.	Whilst	the
TCP	MSS	is	a	transport	layer	setting,	it	can’t	be	discussed	alone	as	its	value	is
dependent	upon	the	network	layer	IP	MTU.	This,	in	turn,	is	dependent	upon	the
data	link	layer	MTU.

	

MTU
Before	you	can	understand	the	transport	layer	MSS	you	need	to	understand
MTU	first.	The	MTU	is	the	maximum	size	of	a	frame	or	packet	that	can	be	sent
on	the	network	at	both	the	data	link	and	network	layers	respectively.	The
network	layer	MTU	cannot	be	larger	than	the	data	link	layer	MTU.
	

The	data	link	layer	MTU	is	the	maximum	size	of	a	frame	including	the
data	payload	and	all	higher	layer	protocol	headers	(layer	three	and	above)
but	not	the	layer	two	headers	or	trailer.	The	data	link	MTU	is	most	often
1500	Bytes.	In	reality	the	MTU	is	actually	higher;	it	must	be	to
accommodate	the	Ethernet	headers	and	trailer;	an	extra	18	to	22	Bytes
depending	on	whether	VLAN	tagging	is	used.	However,	its	value	is
typically	expressed	(and	configured)	as	I’ve	just	described,	hence	the	data
link	MTU	value	is	the	same	as	the	network	layer	MTU.	Non-Ethernet	data
link	layers	may	of	course	have	a	different	MTU.
	
Where	the	network	layer	is	concerned	this	is	the	maximum	size	of	a	packet
including	the	data	payload	and	all	protocol	headers	(layer	three	and	above).
The	IP	MTU	is	most	often	1500Bytes.	In	most	cases	the	IP	MTU	is	not
specifically	configured	on	a	host	or	network	device,	it	is	automatically
derived	from	the	data	link	layer	MTU.	Clearly,	the	network	layer	MTU
cannot	be	larger	than	the	data	link	layer	MTU.
	

MSS
Now	both	MTUs	are	clear	we	can	finally	discuss	the	transport	layer	MSS	which
is	the	maximum	amount	of	data	that	can	be	carried	within	a	TCP	packet.	To	put
it	another	way,	it’s	the	maximum	value	of	the	payload	to	be	carried	within	a

TCP/IP	packet;	it	doesn’t	include	the	TCP	and	IP	headers	that	the	payload	will
be	encapsulated	with.
	

Thus,	the	MSS	is	typically	40Bytes	smaller	than	the	network	layer	MTU	in	order
to	accommodate	the	20	Byte	TCP	headers	as	well	as	the	20Byte	IP	headers	that
the	payload	will	be	encapsulated	with,	giving	us	a	typical	value	of	1460Bytes
(1500-40).	However,	be	very	clear	that	this	doesn’t	have	to	be	the	case;	a	host
with	an	MTU	of	1500	may	have	a	MSS	of	500Bytes	for	a	potentially	good
reason.
	

It’s	worth	noting	that	IP	fragmentation	(discussed	in	the	previous	chapter)	has	no
influence	on	the	MSS;	fragmentation	may	allow	a	packet	that	exceeds	the	MTU
to	be	broken	into	multiple	parts	but	the	MSS	cannot	be	exceeded	whether
packets	are	fragmented	or	not.	In	other	words,	a	3000Byte	packet	can	be
fragmented	by	IP	to	overcome	a	1500Byte	MTU	but	if	the	receiving	host	has	an
MSS	of	1460,	the	data	will	not	be	accepted.	Despite	the	apparent	direct
relationship	between	MTU	and	MSS	as	most	will	match	one	closely	to	the	other
for	maximum	throughput,	this	is	not	always	the	case.
	

A	host’s	TCP	MSS	is	‘presented’	to	the	other	host	during	the	TCP-Three-Way
handshake	using	a	TCP	Option	(discussed	in	an	earlier	section).	If	the	MSS	is
not	specified,	a	default	value	of	536Bytes	is	assumed.
	

Now	we’ve	covered	both	the	MTU	and	MSS,	let’s	use	a	useful	analogy	to
describe	and	remember	them.	Picture	a	car,	the	passengers	are	the	data	payload
(the	MSS)	and	the	baggage	is	the	TCP	and	IP	headers.	The	car	itself	is	the	MTU.
Each	road	has	a	default	value	of	cars	it	can	contain	simultaneously	and	therefore
each	car	has	to	be	a	certain	size.	In	networking	terms	that	is	1500	bytes.	Each	car
that	drives	onto	the	road	has	to	match	this	value	or	be	less	or	it	will	not	work.
We	could	also	change	the	default	value	of	every	single	road	it	drives	on	but	this
would	be	very	hard	to	do.	If	we	exceed	the	MTU	we	need	to	chop	the	car	into
smaller	pieces.	In	order	words,	fragment	the	car.
	

Exceeding	the	MTU
There	are	scenarios	where	you	have	to	add	additional	headers	to	a	packet
(encapsulate	them	further),	for	instance	when	using	a	VPN	tunnel	(we’ll	discuss
this	more	in	Chapter	11,	Security).	This	results	in	IP	fragmentation	which
generally	causes	poor	performance	and	throughput	due	to	the	additional	memory
and	CPU	resources	required	of	the	fragmenting	and	receiving	hosts	or	devices.
This	is	ideally	avoided	by	reducing	the	MSS	as	necessary,	but	often	less
appropriate	MTU	related	methods	are	used.

	
Continuing	with	our	earlier	analogy,	this	means	that	if	your	car	by	default	can
hold	5	passengers,	you	will	have	to	remove	some	passengers	if	you	add	more
baggage	(more	headers).	The	removed	passengers	then	need	to	be	put	in	another
car.

	
One	common	problem	with	VPN	tunnels	is	fragmentation.	If	you	use	the	MTU
of	1500	bytes	and	have	an	MSS	of	1460	bytes,	if	you	add	an	additional	VPN
header	you	will	exceed	the	MTU	which	will	cause	the	packets	to	get	fragmented.
This	may	cause	the	VPN	tunnel	to	perform	poorly.
	

In	order	to	solve	this	we	decrease	the	MSS	(the	amount	of	passengers)	to	be	able
to	fit	the	VPN	header	(the	baggage)	without	exceeding	the	MTU	(the	car).
	

Flow	Control	&	Window	Size
The	big	difference	between	TCP	and	UDP	is	that	TCP	carefully	keeps	track	of
data	that	is	being	sent	and	makes	sure	that	you	get	every	single	packet	(and	the
data	within).	Flow	control	is	one	of	the	key	technologies	that	assist	with	this.
Flow	control	manages	the	rate	data	is	sent	so	that	the	receiving	host	does	not	get
overwhelmed	with	more	data	than	it	can	handle.

	
In	order	to	achieve	this,	TCP	uses	a	sliding	window	acknowledgment	system.	As
we	know,	TCP	uses	acknowledgments	to	signal	to	the	sending	host	that	is	has
received	a	packet	successfully.	Flow	control	and	acknowledgements	work
together	in	order	to	avoid	unnecessary	packet	loss	where	one	host	can	transmit
faster	than	the	other	can	process	the	received	packets.	Acknowledgements	are
demonstrated	in	the	following	diagram;

	

	

Window	Size	in	a	very	basic	sense	is	the	amount	of	data	that	a	TCP	host	declares
it	can	store	in	its	memory	buffer.	On	each	side	of	a	TCP	connection	there	are
buffers	that	store	a	certain	amount	of	data	that	is	either	sent	or	received.	This
helps	the	network	to	work	more	efficiently.	The	window	size	is	first	negotiated
during	the	TCP	Three-Way-Handshake	using	the	Window	parameter	in	the	TCP
header,	however	this	can	be	modified	dynamically	during	the	transmission.	The
window	parameter	defines	the	amount	of	data	the	host	can	receive	before
passing	it	on	to	the	relevant	application(s).	This	also	applies	when	sending	data
from	a	host.	When	sending	data	it	is	called	the	send	window	and	when	receiving
data	it	is	called	the	receive	window.

	
When	a	host	receives	data	it	needs	to	perform	two	tasks,	send	back	an
acknowledgement	to	the	sender	and	transfer	the	data	to	the	application.

	
The	basic	concept	with	sliding	windows	is	that	data	is	acknowledged	when	it	is
received	but	it	is	not	necessarily	transferred	out	of	the	buffer	and	passed	on	to
the	application	immediately.	This	means	that	if	the	send	window	is	greater	than
the	receive	window	it	will	fill	up	the	host’s	buffer	faster	than	it	can	empty	it.	If
this	continues	for	too	long	it	may	lead	to	buffer	overflow	and	the	host	may	crash.

	
In	order	to	prevent	this	we	need	to	adjust	the	window	size	so	that	both	hosts
work	at	the	same	transfer	rate.

	
In	the	following	example,	the	server	advertises	that	its	window	size	is	2000
Bytes	using	the	window	parameter	in	the	TCP	header.

	

1.	 The	client	requests	a	file	on	the	server	and	also	specifies	its	current
windows	size	(2000)	using	the	window	parameter	in	the	TCP	header.
	

2.	 The	server	receives	the	request	and	replies	back	with	ACK	packet.
	

3.	 The	client	replies	back	with	ACK	packet.
	

4.	 The	server	sends	part	1/3	of	the	file	which	has	the	size	of	1000	bytes.
	

5.	 The	client	replies	with	ACK	packet	and	a	new	window	size	of	1000	bytes.
The	new	window	size	is	specified	in	the	window	parameter	of	the	TCP
header.
	

6.	 The	server	sends	part	2/3	of	the	file	which	has	the	size	of	1000	bytes.
	

7.	 The	client	receives	part	2/3	and	puts	it	in	its	buffer.	Now	the	client	has
reached	its	limit	and	filled	up	the	entire	buffer.	The	client	sends	a	reply
back	to	the	server	stating	that	its	window	is	currently	0	(known	as	a	zero
window)	and	acknowledges	the	data	it	has	received.
	

8.	 Since	the	window	is	currently	0	the	server	will	not	send	any	more	data.
	

9.	 When	the	client	is	finished	processing	the	first	2000	Bytes	of	data,	it
requests	the	remaining	part	3/3	from	the	server	and	specifies	a	new	window
of	2000	bytes.	Since	the	receiver	has	processed	all	of	its	traffic	in	its	buffer,
the	client	can	specify	its	window	size	as	2000	bytes	again.
	
10.																						The	server	sends	part	3/3	of	the	file	which	has	the	size	of
1000	bytes.
	
11.																						Client	receives	part	3	of	the	file	and	replies	back	with	ACK,
and	then	terminates	the	connection.

	

	

Silly	Window
Even	though	flow	control	is	a	great	way	to	manage	traffic	rates,	it	can	cause
some	issues.	When	a	server	is	not	able	to	process	data	fast	enough	because	the
application	is	performing	slowly,	it	is	forced	to	decrease	the	window	size
accordingly.	If	the	server	is	still	suffering	problems	with	data	processing,	the
window	size	will	decrease	even	further,	to	the	point	where	the	TCP	and	IP
headers	are	bigger	than	the	data.	The	TCP	and	IP	header	are	40	bytes	so	if	the
window	size	were	to	decrease	below	40	bytes	the	communication	becomes	very
inefficient,	hence	the	name	“silly	window”.	This	is	like	sending	a	package	where
the	box	itself	weighs	more	than	the	contents	inside.

	

Ports	&	Services
When	a	host	is	trying	to	access	a	server,	you	need	a	way	to	identify	the	services
you	are	trying	to	access.	Since	most	servers	can	run	several	different	services,	a
method	was	required	to	identify	both	common	and	uncommon	services	and
distinguish	one	service	from	another.

	
The	solution	was	to	assign	each	service	a	specific	port	number	and	use	a	specific
range	for	common,	well-known	services	and	their	related	ports.	These	port
numbers	range	from	0-1023,	some	familiar	ones	are:

	
80	-	Web	Server	or	HTTP	(Hyper	Text	Transfer	Protocol)
	
20	and	21	–	FTP	(File	Transfer	Protocol)
	
53	–	DNS	(Domain	Name	System)
	
22	–	SSH	(Secure	Shell)
	
443	–	HTTPS	(Hyper	Text	Transfer	Protocol	Secure)

	
We	will	talk	more	about	these	applications	and	services	later	on	in	the	book.

	
If	we	did	not	assign	port	numbers	to	services,	it	would	mean	that	HTTP	would
be	the	only	service	a	web	server	could	provide	and	the	client	would	have	to
know	this	somehow.	Port	numbers	allow	us	to	differentiate	between	the	different
services	a	server	provides.
	

When	accessing	the	server,	the	TCP	header	contains	both	the	source	and	the
destination	port.	The	source	port	are	used	by	the	sending	host	to	help	keep	track
of	existing	connections	but	also	make	it	possible	to	have	multiple	connections
from	a	host.	If	we	use	HTTP	as	an	example	again,	if	you	were	to	visit	multiple
HTTP	sites,	you	would	most	likely	always	use	port	80	as	the	destination	port.
But	in	order	to	visit	multiple	sites,	you	need	to	establish	several	connections,

each	with	a	unique	source	port	that	allows	the	HTTP	servers	to	know	which	port
to	respond	back	to	(and	the	client	know	which	connection	the	data	relates	to).
	

When	a	host	is	communicating	with	a	server	it	specifies	a	source	and	destination
port,	when	the	server	replies	back	to	the	host	the	source	and	destination	port	will
be	reversed.	Please	see	the	following	diagram	for	a	more	detailed	description.
	

	

In	the	diagram	we	can	see	that	the	host	with	IP	address	192.168.1.10	sends	a
HTTP	request	to	the	server	with	IP	address	10.10.10.1	using	destination	port	80
and	source	port	45361.	When	the	server	responds	to	the	host,	the	source	and
destination	port	are	reversed.
	

The	client	host	source	port	number	is	usually	a	random	number	between	1024

and	the	highest	possible	port	number:	65535	(the	highest	possible	number	(in
decimal)	that	can	be	achieved	with	16bits).	In	order	to	specify	which	server	and
the	service	you	are	trying	to	access	we	use	the	destination	IP	address	and	port
number.	For	example,	192.168.1.200:80	or	192.168.1.200:21.	In	most	cases,	the
service	port	is	hidden	from	a	user	by	the	application	and	you	only	need	to
specify	it	when	the	default,	standard	port	is	not	used.	For	instance,
http://www.example.com	will	use	well-known	port	80,
http://www.example.com:8080/	forces	use	of	non-standard	port	8080.
	

The	combination	of	both	an	IP	address	and	a	port	is	often	called	a	socket.	In
order	to	verify	that	a	TCP	service	is	up	and	running	you	can	use	telnet	and
specify	the	relevant	port	to	see	if	the	application	is	responding	on	that	port.
Please	note	that	this	is	only	possible	when	using	the	TCP	protocol.	The	screen
will	normally	be	blank	and	you	cannot	input	any	commands	but	if	the	screen	is
up	and	running	you	know	if	the	application	is	running	on	the	specified	port.	
	

Port	numbers	are	divided	into	three	different	ranges,	as	follows;
	

Well-known:	0-1023
	

Registered:	1024-49151
	

Dynamic:	49152-65535
	

The	well-known	ports	have	been	reserved	for	assignment	by	the	Internet
Corporation	for	Assigned	Names	and	Numbers	(ICANN).	They	are	called	well-
known	because	they	are	mostly	only	assigned	to	standards-based	open	protocols
that	are	likely	to	be	in	common	use	within	the	internet	community.	For	instance,
HTTP	uses	well-known	port	80	and	SMTP	port	25.
	
Registered	ports	on	the	other	hand	are	ports	that	companies	or	organizations
register	with	the	ICANN	in	order	to	use	them	with	their	own	proprietary
application(s).

Dynamic	ports	are	also	known	as	private	port	numbers	and	can	be	used	by	any
application,	not	just	designated	ones.	Dynamic	ports	are	used	to	avoid	conflicts
with	applications	that	use	well-known	and	registered	ports;	hence	they	are
typically	used	as	the	source	port	by	TCP	clients.
	

TCP	Reset	Packets
TCP	Reset	packets	are	used	when	two	hosts	are	communicating	and	one	of	the
hosts	wants	to	terminate	the	transmission	quickly	without	expecting	further
communication	from	the	other	host.	This	can	occur	for	several	reasons,	one	of
which	is	a	TCP	Half-Open	connection	(we’ll	explain	these	in	the	next	section,
delayed	binding).

	
In	a	TCP	session,	each	host	in	the	transmission	needs	to	both	send	and	receive
acknowledgements.	The	TCP	protocol	cannot	work	without	this	so	when	two
hosts	are	communicating	and	one	of	them	suddenly	stops	receiving
acknowledgements	it	will	cause	problems.	In	order	to	solve	this,	the	host	that
discovers	the	issue	can	send	reset	packet	(RST	Packets)	to	the	non-responsive
host	in	order	to	reset	the	transmission.	This	is	explained	in	the	diagram.

	

	
1.	 The	server	and	client	are	communicating	with	each	other	successfully.	The

server	sends	some	data	to	the	client.
	

2.	 The	client	replies	back	with	an	ACK	message	stating	that	it	has	received
the	packet	successfully.
	

3.	 The	server	sends	another	packet	with	some	more	data.	But	this	time	the
client	crashes	and	fails	to	respond	with	an	ACK	message.
	

4.	 The	server	expects	to	receive	an	ACK	message	but	since	the	client	did	not
respond,	the	server	resends	the	packet.

	
5.	 The	client	is	not	responding	to	the	packets	so	the	server	concludes	that

communication	is	no	longer	possible	and	therefore	sends	an	RST	packet	to
the	client	that	will	reset	the	transmission.

	

Note								There	is	a	known	exploit	that	hackers	use	regarding
ACK	messages.	This	attack	is	known	as	a	TCP	Half	Open	or
SYN-Flood	attack.	An	attacker	will	send	multiple	SYN	packets	to
the	server	and	when	the	server	replies	the	client	doesn’t	respond.
If	multiple	clients	do	this	it	will	eventually	exhaust	the	server’s
memory	resources	and	cause	it	to	fail.	We	discuss	this	in	detail	in
the	next	section.

	

Delayed	Binding
There	are	some	scenarios	where	the	initial	TCP	request	from	a	client	to	a	server
is	not	handled	directly	by	the	server.	For	instance	when	using	a	proxy,	the	initial
request	is	terminated	by	the	proxy	and	it	then	opens	a	new	one	to	the	server,	on
behalf	of	the	client.	This	is	used	for	several	reasons	including	security.	You’ll
find	more	details	on	proxy	operation	in	the	later	F5	Solutions	&	Technology
chapter.

	
A	known	DDoS	(Distributed	Denial	of	Service)	form	of	attack	is	called	a	TCP-
Half	open	or	SYN	flooding	attack.	The	goal	with	this	attack	is	to	send	so	many
SYN	packets	to	the	server	that	it	will	fill	up	the	server’s	connection	table.	Each
connection	in	the	table	consumes	a	small	amount	of	memory	and	when	the
server’s	memory	is	exhausted	it	may	cause	the	server	to	crash	or	will	prevent	it
from	responding	to	legitimate	requests.	Sending	a	SYN	to	the	server	is	quite
normal	(it	would	be	very	difficult	to	communicate	with	it	otherwise)	so	it	isn’t
possible	to	deny	these	packets.

	
The	server	accepts	the	SYN,	adds	an	entry	to	its	connection	table	and	sends	back
a	SYN-ACK.	However,	the	sending	client(s)	will	not	respond	to	the	SYN-ACK
which	leaves	the	connection	half-open.	The	entry	in	the	server’s	connection	table
remains	until	it	times	out	(normally	taking	up	to	a	minute)	and	thus	sending	a
large	number	of	SYNs	in	a	short	time	period	can	exhaust	a	server’s	memory.

	

	

Delayed	binding	can	help	protect	real	servers	from	this	issue,	where	proxies	are
concerned,	by	ensuring	a	client-side	connection	is	correctly	established	before
establishing	one	server-side.
	

	

As	you	can	see	in	the	illustration,	the	proxy	will	establish	a	connection	with	the
client.	When	the	client	and	the	proxy	have	a	successful	(fully	open)	connection,
the	proxy	will	open	up	the	required	connections	towards	the	servers.	This	is
called,	delayed	binding.
	

Exam	Tip								Knowing	what	delayed	binding	is	and	what	it	is
used	for	is	very	important	when	taking	the	exam.	Make	sure	you
fully	understand	what	it	is	and	what	it	is	used	for.

	

Chapter	Summary
TCP	is	a	connection-oriented	protocol	that	provides	features	like	flow
control	and	reliable	data	delivery	services	that	ensures	that	the	packet
arrive	at	the	destination	without	any	errors	or	packet	loss.
	
In	a	TCP	session,	every	packet	that	is	sent	between	each	system	receives	a
sequence	number.	An	Acknowledgement	or	ACK	has	to	be	sent	each	time
a	system	successfully	receives	a	packet.	If	the	sending	system	did	not
receive	an	ACK,	the	packet	is	resent.
	
MSS	is	short	for	Maximum	Segment	Size	and	it	is	the	maximum	data	each
segment	can	contain.	Segment	size	is	the	size	of	a	packet	if	you	remove	the
IP	and	TCP	header.
	
MTU	is	short	for	Maximum	Transmission	Unit	and	it	is	the	default	size	of	a
packet	that	gets	sent	out	on	the	network.	In	other	words,	how	much	total
data	a	packet	can	contain.
	
Delayed	binding	is	used	to	prevent	network	attacks	by	having	a	proxy	that
handles	the	originating	request	and	establishes	a	connection	before	the
request	is	passed	on	to	the	server.
	
Unlike	TCP,	the	User	Datagram	Protocol	or	UDP	is	a	connectionless
protocol	and	provides	no	assurance	that	the	packet	arrives	at	the	destination
or	that	that	it	arrives	without	any	errors.

	

Chapter	Review
In	order	to	test	your	knowledge	and	understanding	of	this	chapter,	please	answer
the	following	questions.	You	will	find	the	answers	and	explanations	of	the
questions	at	the	end	of	this	chapter.

	
1.	 True	or	false:	TCP	is	a	connection-oriented	protocol?

	
a.	 True

	
b.	 False

	
	

2.	 Can	you	be	certain	that	the	packet	arrives	at	the	destination	when	sending	a
packet	using	the	UDP	protocol?
	
a.	 Yes

	
b.	 No

	
	

3.	 During	the	TCP	Three-Way-Handshake,	which	packets	are	exchanged?
Answer	with	the	correct	order.
	
a.	 SYN,	SYN,	ACK

	
b.	 SYN,	ACK,	SYN-ACK

	
c.	 SYN-ACK,	SYN,	ACK

	
d.	 SYN,	SYN-ACK,	ACK

	
	

4.	 What	is	the	difference	between	MTU	and	MSS?
	
a.	 MTU	controls	the	size	of	the	packets	and	MSS	controls	the	speed	of

the	transmission.

	
b.	 MTU	checks	errors	and	MSS	fixes	those	errors.

	
c.	 MTU	controls	the	speed	of	the	transmission	and	MSS	controls	the

size	of	the	packets.
	
d.	 MTU	is	the	total	size	of	a	packet	that	gets	sent	out	on	the	network	and

the	MSS	is	the	maximum	size	of	a	packet	excluding	the	TCP	and	IP
header.
	
	

5.	 Delayed	binding:	which	statement	is	true?
	
a.	 When	using	delayed	binding,	the	initial	request	will	not	be	handled

directly	by	the	server.	A	proxy	or	other	device	will	first	establish	a
connection	and	forward	this	to	the	server.
	

b.	 Delayed	binding	is	a	great	way	to	save	bandwidth.
	
c.	 Delayed	binding	cannot	be	used	to	increase	security.

	
d.	 When	using	delayed	binding,	a	proxy	will	always	forward	the

connection	to	the	server.
	

Chapter	Review:	Answers
You	will	find	the	answers	to	the	chapter	review	questions	below:

	
1.	 The	correct	answer	is:	A

	
a.	 True

	
b.	 False

	

TCP	is	a	connection-oriented	protocol	and	it	will	make	sure	that	the	packet
arrives	at	the	destination	uncorrupted.	If	a	packet	is	dropped	or	lost,	it	will	be
resent	until	it	has	reached	its	timeout	period.

	

2.	 The	correct	answer	is:	B
	
a.	 Yes

	
b.	 No

	

UDP	is	a	connectionless	protocol	which	means	that	it	does	not	care	if	the	packets
arrive	at	their	destination	or	if	the	packets	get	corrupted	during	transit.	If	a
packet	is	lost	UDP	will	not	resend	any	packets.

	
3.	 The	correct	answer	is:	D

	
a.	 SYN,	SYN,	ACK

	
b.	 SYN,	ACK,	SYN-ACK

	
c.	 SYN-ACK,	SYN,	ACK

	
d.	 SYN,	SYN-ACK,	ACK

	
	

4.	 The	correct	answer	is:	D
	
a.	 MTU	controls	the	size	of	the	packets	and	MSS	controls	the	speed	of

the	transmission.
	

b.	 MTU	checks	errors	and	MSS	fixes	those	errors.
	

c.	 MTU	controls	the	speed	of	the	transmission	and	MSS	controls	the
size	of	the	packets.

	
d.	 MTU	is	the	total	size	of	a	packet	that	gets	sent	out	on	the	network

and	the	MSS	is	the	maximum	size	of	a	packet	excluding	the	TCP
and	IP	header.

	
5.	 The	correct	answer	is:	A

	
a.	 When	using	delayed	binding,	the	initial	request	will	not	be

handled	directly	by	the	server.	A	proxy	or	other	device	will	first
establish	a	connection	and	forward	this	to	the	server.
	

b.	 Delayed	binding	is	a	great	way	to	save	bandwidth.
	
c.	 Delayed	binding	cannot	be	used	to	increase	security.

	
d.	 When	using	delayed	binding,	a	proxy	will	always	forward	the

connection	to	the	server.
	

7.	Switching	&	Routing
	

Switching
Early	networks	used	multiple	LANs	that	were	connected	to	each	other	using	a
router.	This	formed	a	network	that	was	larger	than	was	possible	with	a	single
LAN.	With	a	single	LAN	there	was	a	limit	to	how	many	hosts	could	be
connected	and	therefore	you	had	to	divide	your	network	into	multiple	smaller
LANs.	When	a	single	LAN	got	too	big	it	caused	the	network	to	perform	poorly
and	caused	interruptions	to	traffic	flow.	Routers	have	been	around	for	a	much
longer	time	than	switches,	but	switches	revolutionized	network	design.

	
As	previously	mentioned	switches	divide	every	port	on	the	switch	into	a	separate
collision	domain	and	decrease	collisions	drastically.	They	also	forward	the
traffic	out	to	the	single	port	needed	to	reach	the	destination	host	instead	of
flooding	the	network	(in	most	cases).	This	makes	it	possible	to	build	very	large
LANs.

	

Routing
In	previous	chapters	we	have	discussed	layer	three	addressing,	what	a	packet
consists	of	and	how	communications	between	two	hosts	work.	But	we	have	not
really	explained	how	a	packet	gets	from	one	host	to	another,	step	by	step.
Routing	is	not	the	only	component	that	is	responsible	for	making	sure	a	packet
arrives	at	the	correct	destination,	but	it	is	a	fundamental	technology.

	
In	smaller	environments,	the	router’s	job	can	be	considered	quite	simple.	It
simply	makes	sure	that	traffic	from	one	(layer	three)	network	is	transferred
(routed)	to	another.	When	there	are	only	two	networks	the	only	job	the	router
has	is	to	forward	packets	from	one	network	to	the	other.

	
When	the	number	of	networks	grows	larger	and	more	routers	are	added,	things
can	get	complicated	quickly.	When	adding	more	routers,	you	may	also	add
multiple	paths	between	destinations	and	each	router	has	to	evaluate	the	available
paths	and	choose	the	most	effective	one.

	

Note								A	router	does	not	have	to	forward	every	packet	it
receives.	As	we	detailed	previously,	routers	do	not	forward	layer
two	or	three	broadcasts	and	other	types	of	traffic.
	

	

In	the	following	diagram	you	can	see	how	complicated	a	network	can	be	when
using	multiple	routers	(note	each	router	has	multiple	paths	to	the	others);
	

	
A	Router’s	Role
The	primary	role	of	a	router	is	to	connect	two	or	more	networks	together	at	layer
three.	There	are	many	ways	this	functionality	can	be	deployed,	some	examples
are;
	

Connecting	several	branch	offices	with	each	other	over	WAN	links
	
Minimizing	network	traffic	by	creating	multiple	broadcast	and/or	collision
domains
	
Connecting	networks	that	are	in	different	buildings	or	floors	of	a	building

	
Connecting	networks	that	use	different	network	technologies	like	FDDI

	

	
Different	Types	of	Routers
A	router	can	either	be	a	stand-alone	hardware	device	which	is	called	an
appliance	or	it	can	be	software	running	on	a	server	that	has	multiple	network
cards.

	
There	are	several	UNIX/Linux	distributions	and	Windows	Operating	systems
that	can	function	as	a	router.	All	you	need	to	do	is	install	at	least	two	network
cards	that	will	connect	to	the	different	networks	and	configure	the	operating
system	to	route	traffic	between	the	two.

	
Most	companies	(at	present	at	least)	choose	an	appliance	solution	because	these
offer	vendor	support	and	better	functionality,	which	most	software	based	routers
do	not.	An	appliance	is	a	special-purpose	computer	which	has	several	network
interfaces,	dedicated	high-performance	memory	where	it	can	store	the	routing
table	and	an	operating	system	that	is	custom	built	for	the	purpose.	All	routers
must	have	at	least	two	interfaces	to	be	able	to	route	traffic	between	networks.
They	also	need	to	have	an	IP	address	assigned	to	each	interface	that	participates
in	routing.

	
There	are	other	router	devices	which	allow	you	to	share	your	internet	connection
with	other	devices	but	this	function	is	mostly	deployed	on	consumer	grade
devices.	These	routers	come	with	additional	functions	like	firewalling,	a	DHCP
server	and	switching	functionality	but	generally	much	lower	performance,
security	and	reliability	than	enterprise	grade	routers.
	

The	Routing	Table
One	of	the	core	functions	of	an	IP	router	is	building	a	routing	table.	Without	it,
the	router	can	only	function	as	a	packet	forwarder.	The	routing	table	contains	all
of	the	information	the	router	needs	to	make	decisions	about	where	to	send	the

packets	it	has	received.	You	can	manually	configure	the	routing	table	and	this	is
known	as	static	routing	or	you	can	automate	the	process	using	what	is	known	as
dynamic	routing,	using	a	Routing	Protocol.
	

There	are	several	different	types	of	routes	a	router	installs	in	its	routing	table,
here	are	some	examples:

Direct	route	–	The	destination	can	be	reached	directly	and	is	attached	to	a
network	one	of	the	router’s	interfaces	resides	on
	
Default	route	–	When	a	router	does	not	find	a	specific	route	in	its	routing
table,	it	will	send	packets	to	the	default	route	destination	(if	one	is
configured)
	
Static	route	–	A	route	that	has	been	manually	added	to	the	routing	table
by	an	administrator
	
Dynamic	route	–	This	route	has	been	automatically	added	by	a	dynamic
routing	protocol	such	as	OSPF	or	BGP

	

Note								We	cover	dynamic	routing	protocols	in	greater	detail
later	in	this	chapter.

	

To	be	able	to	know	where	to	send	each	packet,	a	router	searches	its	routing	table
for	the	network	containing	the	destination	IP	address	and	locates	the	longest
(most	specific)	match.	For	instance,	if	the	router	has	a	whole	network	in	the
routing	table	and	a	single	host	address	is	being	looked	up,	you	may	receive
multiple	matches.	If	we	have	the	network	addresses	192.168.0.0/16	and
192.16.10.0/28	in	our	routing	table	we	will	receive	multiple	matches	when
looking	up	the	host	192.168.10.12.
	

The	longest	match	is	the	most	accurate	match	of	the	destination	IP	address.	But
the	router	does	not	look	at	the	IP	address	in	decimal	format.	It	works	like	any
other	computer,	with	binary	values.	This	means	that	the	longest	match	refers	to

the	binary	value	and	not	the	decimal	value.	You	will	find	an	example	of	this
next:
	

	

The	router	will	use	route	#2	since	it	has	the	longest-match.
	

When	it	finds	the	longest	match,	the	routing	table	data	will	indicate	which
interface	the	router	should	send	the	packet	out	on.
	

When	a	host	sends	packets	to	a	destination	outside	the	local	network,	it	sends	the
packets	to	its	default	gateway	(the	default	gateway	is	a	router).	It	is	as	though	the
host	is	saying,	“The	destination	host	is	not	on	the	same	network	as	I	am”	and
asks	the	router	to	handle	it.	You	could	say	that	the	default	gateway	is	the	host’s
door	out	of	the	network.
	
If	the	router	finds	the	network	in	its	routing	table	it	can	forward	it	to	the	next	hop
destination	which	forwards	it	to	the	next	destination	(if	necessary)	and	this
continues	to	occur	until	it	reaches	the	final	destination	network	and	host.

	
When	a	packet	travels	through	each	network	on	the	path	to	its	ultimate
destination,	every	layer	three	device	it	passes	through	is	considered	a	hop.	The
next-hop	address	is	simply	the	address	to	the	next	destination.	In	the	routing
table	you	will	find	the	network	or	host	address	and	the	corresponding	next-hop
address	which	is	the	next	destination.

	

If	the	router	cannot	locate	the	network	an	IP	address	resides	on	by	looking	into
its	routing	table,	it	sends	it	to	its	default	route	(if	one	is	configured).	The	default
route	is	configured	with	the	following	IP	address:	0.0.0.0/0.
	

Note								If	the	router	does	not	have	a	default	route,	the	packet(s)
will	be	dropped.
	

	

Note								The	default	gateway	is	typically	a	router	which	connects
two	or	more	networks	together.		A	host	will	send	packets	to	its
default	gateway	when	the	network	address	is	different	from	its
own.	A	router	does	not	have	a	default	gateway	since	it	is	the	door
to	other	networks.	Instead	the	router	uses	a	default	route	(if
configured)	when	it	cannot	locate	a	network	in	its	routing	table.
	

	

To	summarize,	a	router	uses	its	routing	table	to	determine	where	to	send	packets
and	then	forwards	the	packets	to	that	destination	(if	it	can)	using	the	relevant
interface.
	

In	the	table	following	you	can	see	the	output	of	a	routing	table	from	a	router:
	

	
1.	 In	this	column	there	are	multiple	entries,	these	are	the	different	routes	that

are	installed	in	the	routing	table.
	

2.	 This	column	contains	the	type	of	route,	and	sometimes	the	address	to
which	the	traffic	gets	sent	to	if	it	matches	one	of	these	entries.
	

3.	 The	third	entry	in	the	routing	table	contains	the	different	interfaces	(ports)
that	the	traffic	gets	sent	out	on	if	it	matches	the	route.

	

Note,	in	this	example,	traffic	that	is	not	destined	to	a	specific	network	in	the
routing	table	is	routed	via	the	default	route	(0.0.0.0/0)	and	will	get	sent	to	next
hop	IP	address	2.248.168.1	using	interface	fe-0/0/0.0.
	

Dynamic	Routing	Protocols
You	can	configure	the	routing	table	in	two	ways,	either	by	manually	entering	the
routes	yourself,	which	is	called	static	routing	or	automating	the	process	using	a
dynamic	routing	protocol.	If	you	have	a	small	network,	managing	routing	tables
manually	using	static	routes	is	easy	but	if	you	have	a	large	network	it	is
preferable	to	use	dynamic	routing	protocols	that	will	automatically	build	the
routing	table	on	every	router.

	
A	routing	protocol	operates	through	the	exchange	of	network	information
between	routers;	each	router	then	calculates	the	best	path	to	each	available
destination	network	and	dynamically	‘builds’	a	suitable	routing	table.	When
there	is	a	disruption	or	failure	in	the	network	environment,	routers	can	advertise
or	detect	this	and	recalculate	the	best	path	and	related	next-hop	address	or
interface.

	
Every	routing	protocol	has	its	own	unique	method	for	exchanging	network
information	between	routers	and	determining	the	best	path	and	related	next	hop
address.	There	are	three	types	of	routing	protocols:

	
Distance-vector
	
Link-state

	
Path-vector

	
Distance	vector	protocols	will	only	send	full	routing	tables	between	neighboring
routers	and	use	simple	metrics	like	hop	count	to	determine	the	best	routes.
	

Link	state	protocols	on	the	other	hand,	build	up	a	map	of	the	entire	network	on
each	router	by	obtaining	information	from	every	other	router	on	the	network.
Whenever	there	is	a	change	or	disruption	in	the	network,	relevant	updates	are
flooded	so	that	a	recalculation	of	each	route	is	made	by	each	router.	To	speed	up
(and	limit	flooding	by)	this	process,	hierarchical	routing	is	typically	used.	The

network	is	divided	into	smaller	regions	and	each	router	only	needs	to	know	how
to	get	to	the	other	networks	within	that	region.
	

Path-vector	protocols	use	path	information	instead	and	this	gets	updated
dynamically,	as	with	other	protocols.	Each	entry	in	the	path	vector	protocol
contains	the	destination	network,	the	next	router	and	the	path	to	it.	Border
Gateway	Protocol	is	an	example	of	a	path-vector	protocol	and	is	used	to	route
traffic	across	the	Internet.	Unlike	link	state	protocols	that	build	up	a	map	of	the
entire	network	based	on	the	information	it	has	received,	BGP	receives	a	routing
table	from	its	neighboring	peer	at	start	up	and	then	relies	on	updates	that	it
receives.	These	route	updates	are	stored	in	what	is	called	a	Routing	Information
Base	(RIB)	and	a	routing	table	will	only	store	one	route	(the	best	one)	per
destination,	however	the	RIB	can	contain	multiple	paths	to	a	destination.
	

BGP	divides	each	routing	domain	into	what	is	known	as	autonomous	system	or
AS.
	

Note								A	routing	domain	is	a	collection	of	networked	systems
that	operate	common	routing	protocols	and	are	under	the	control
of	a	single	administration.
	

	
When	a	host	is	trying	to	access	a	resource	across	the	Internet,	BGP	chooses	the
best	path	through	the	Internet	and	most	of	the	time	it	chooses	the	path	that	has
the	least	number	of	autonomous	systems,	also	known	as	the	shortest	AS	path.

	
Here	are	a	few	examples	of	commonly	used	dynamic	routing	protocols:
	

Routing	Information	Protocol	(RIP)	–	This	is	a	distance	vector
protocol	that	uses	hop	count	as	a	metric	to	determine	the	best	next	hop.
The	most	recent	version	is	RIP	version	2	which	makes	it	possible	to
carry	subnet	information.	This	is	necessary	to	support	CIDR	and	VLSM.
The	maximum	hop	count	is	16.

	
Intermediate	System	–	Intermediate	System	(IS-IS)	–	This	is	a	link-
state	protocol;	it	creates	a	full	network	topology	on	every	router	and
uses	Dijkstra's	algorithm	to	calculate	the	best	next	hop.	It	is	commonly
used	by	Internet	Service	Providers	(ISP).

	
Open	Shortest	Path	First	(OSPF)	–	This	is	one	of	the	most	commonly
used	protocols.	OSPF	is	also	a	link-state	protocol	which	creates	a	map
of	the	entire	network	on	each	router.	This	protocol	also	uses	the
Dijkstra's	algorithm	and	is	used	within	both	enterprise	and	ISP
networks.

	
Border	Gateway	Protocol	(BGP)	–	This	protocol	is	used	to	make
routing	decisions	on	the	internet	and	is	used	by	ISPs.	Instead	of	using	a
certain	algorithm	or	a	hop	count,	BGP	bases	its	routing	decisions	on
paths	and	network	policies.

	

IP	&	MAC	Address	Changes
Routing	In	Action
To	summarize	everything	so	far	regarding	MAC	and	IP	addressing,	switching
and	routing	let’s	look	at	what	happens	when	a	TCP/IP	packet	is	sent	from	one
host	to	another	between	two	networks.	Note	that	a	shortened	version	of	the	MAC
address	is	used	in	the	following	examples	for	the	sake	of	brevity.
	

	
In	the	following	illustrations	you	can	see	how	both	layer	2	and	layer	3
addressing	works	and	how	these	technologies	enable	the	packet	to	travel	from
one	destination	to	another.	The	difference	between	switches	and	routers	becomes
very	clear.

	
In	this	example	the	host	with	IP	address	192.168.1.2	wants	to	send	data	to	the
host	with	the	IP	address	192.168.3.2,	which	resides	on	a	different	network.

	

Note								Since	we	are	only	interested	in	viewing	layers	2-4	we
will	combine	layer	5-7	and	call	this	the	Application	layer.

	

If	we	go	through	this	process	by	looking	at	the	OSI	model,	the	Application	layer
will	pass	the	data	down	to	the	Transport	layer	and	the	TCP	protocol	which	will
add	a	source	port	number	and	a	destination	port	number.
	

	

When	the	transport	layer	has	added	the	port	Information	and	encapsulated	it
within	the	TCP	header	fields,	the	transport	layer	passes	the	packet	down	to	the
Network	layer	and	the	IP	protocol	which	then	adds	the	source	and	destination	IP
addresses.	The	source	and	destination	IP	addresses	are	encapsulated	within	the
IP	header.	During	the	entire	transmission,	these	addresses	will	not	change.

	

The	next	layer	to	process	the	data	is	the	Data	Link	layer	which	adds	the	source
and	destination	MAC	addresses	in	the	header	fields	which	is	encapsulated	in	the
packet.	But	before	it	can	do	so,	it	needs	to	figure	out	if	the	destination	host	is	on
the	same	network	as	itself	or	not.	If	the	host	is	not	on	the	same	network,	it	needs
to	send	the	data	to	the	MAC	address	of	the	default	gateway.	It	determines
whether	the	destination	host	exists	on	the	local	network	or	not	by	comparing	the
network	portion	of	the	IP	address	to	its	own.	Obviously	in	this	example	the
destination	is	on	a	remote	network.
	

If	the	PC	does	not	know	the	MAC	address	of	its	default	gateway,	it	will	use	ARP
to	send	out	an	ARP	request	to	all	the	hosts	on	its	broadcast	domain	to	determine
the	MAC	address.
	

	

Once	the	host	has	the	relevant	MAC-address,	it	can	correctly	address	the	layer
two	frame	and	send	it	to	the	default	gateway.	The	router	will	then	do	a	routing
table	lookup	to	select	a	next	hop	to	route	the	packet	towards	network	3.
	

It	is	important	not	to	confuse	the	default	route	with	the	default	gateway.	To
repeat	what	we	explained	earlier,	the	default	gateway	is	a	router	which	connects
two	or	more	networks	together.	Hosts	will	send	packets	to	their	default	gateway
when	the	network	address	is	different	from	their	own.	A	router	does	not	have	a
default	gateway	since	it	is	the	door	to	other	networks.	Instead	the	router	uses	a
default	route	when	it	cannot	locate	the	specified	network	in	its	routing	table.
	

You	may	ask	how	does	a	host	know	the	IP	address	of	its	default	gateway?	This
is	configured	either	manually	by	the	administrator	or	through	DHCP.
	

The	destination	IP	address	is	the	final	destination	of	the	packet	and	the	MAC
addresses	are	the	stops	the	packet	makes	along	the	way	across	each	network
medium	until	it	reaches	the	correct	host.	So	at	each	stop,	the	source	and
destination	MAC-addresses	will	change.
	

After	layer	2	has	added	the	MAC	addresses	and	a	CRC	checksum	to	the	packet,
it	then	passes	it	on	to	the	physical	layer	which	converts	the	ones	and	zeroes	into
electrical	signals	that	can	be	transmitted	on	the	wire.
	

The	first	device	to	receive	the	request	is	the	Ethernet	switch.	The	switch	will
look	through	its	MAC	address	table	to	find	a	match	for	the	destination	MAC-
address.	A	MAC	address	table	on	a	switch	is	commonly	known	as	a	forwarding
table.	If	no	match	is	found	it	will	broadcast	the	packet	to	all	ports	except	the	one
it	arrived	at.
	

	

The	switch	finds	a	match	in	its	forwarding	table	and	sends	the	packet	to	the
router	via	port	4.	The	switch	will	not	change	the	MAC	address	or	the	layer	3	IP
address;	it	will	just	forward	the	frame	as	necessary.
	

Now	the	router	has	received	the	packet	at	port	1	and	looks	at	the	destination
MAC	address	to	verify	that	it	is	the	intended	recipient.
	

	

If	the	router	can	verify	that	the	packet	was	intended	for	it,	it	strips	off	the	layer	2
frame	headers	and	examines	the	layer	3	destination	IP	address.	By	comparing
the	destination	IP	address	against	the	networks	in	its	routing	table,	the	router	can
determine	which	port	it	should	send	the	packet	to.	In	our	case	the	PC
192.168.3.2	belongs	to	network	192.168.3.0	which	is	a	direct	route	on	the	router.
Even	though	we	know	which	port	the	router	should	forward	the	packet	to,	the
router	does	not	know	the	MAC	address	of	the	recipient.	Therefore	the	router
needs	to	perform	an	ARP	request.
	

	

Next,	the	router	adds	a	new	destination	and	source	MAC	address.	The	source
will	be	the	MAC	address	of	its	own	interface,	port	2.	The	destination	will	be	the
MAC	address	of	the	destination	host.
	

	

Since	the	router	is	a	layer	3	device,	it	can	remove	the	layer	2	frame	and	examine
the	layer	3	one.	This	is	one	of	the	big	differences	between	switches	and	routers.
The	router	cannot	change	the	destination	or	source	IP	address	but	it	will	change
the	MAC	address;	each	router	will	do	so	at	each	hop.	A	switch	reads	the	layer	2
addresses	but	doesn’t	change	these	values.
	

Now	the	packet	has	reached	the	switch	in	network	192.168.3.0.
	

	

The	switch	now	looks	at	its	forwarding	table	to	find	the	MAC	address.	If	this
address	is	not	in	the	forwarding	table,	the	switch	will	flood	the	packet	on	every
port	except	the	one	it	arrived	on.	In	our	case	the	MAC	address	of	192.168.3.2
exists	in	the	forwarding	table	and	the	switch	forwards	the	frame	out	of	port	3	to
the	host.
	

When	the	packet	arrives	at	the	destination	host	it	will	examine	the	layer	2
address	to	verify	that	it	is	the	intended	recipient.	Once	it	has	done	that,	it	will
remove	the	layer	2	frame	headers	and	look	at	the	destination	IP	address.	If	the	IP
address	matches,	it	will	send	the	packet	to	the	transport	layer	which	will	look	at
the	destination	and	source	ports.	It	will	continue	like	this	until	the	data	reaches
the	correct	application.
	

	

Network	Address	Translation	(NAT)
We’ve	previously	discussed	IP	addressing	and	the	fact	public	IPv4	addresses	are
running	out.	Network	Address	Translation	(NAT)	is	a	technique	that	helps
minimize	public	address	usage.	We	also	mentioned	that	IANA	reserved	three
private	IP	address	ranges	that	cannot	be	routed	on	the	internet	and	they	are	used
for	internal	purposes.

	
Commonly,	NAT	takes	these	private	IP	addresses	and	translates	them	into	public
IP	addresses	and	vice	versa,	but	it	can	be	used	with	all	addresses	no	matter	if
they	are	private	or	public.		All	the	internal	client	requests	appear	to	come	from
one	device	when	in	reality	they	come	from	several	different	clients	and	servers.
This	is	also	known	as	hide	NAT.	This	technology	provides	a	means	of	obscurity
(often	confused	with	security)	by	enabling	users	to	hide	their	internal	IP
addresses	behind	one	or	more	public	ones.	Not	everyone	agrees	on	this	and	it’s	a
highly	debated	subject.

	
NAT	is	not	only	available	on	routers;	it’s	also	available	on	several	other	devices
such	as	firewalls	and	load	balancers.	In	all	the	following	examples	we	will	show
a	router.

	
There	are	several	different	types	of	NAT	technologies	with	each	one	serving	a
specific	purpose.

	

Static	NAT
A	static	NAT	is	a	one-to-one	mapping	between	two	addresses.	It	includes	both	a
destination	address	translation	in	one	direction	and	a	source	address	translation
in	the	other	direction.	The	translation	can	occur	in	either	direction	(as	discussed
shortly	in	the	Destination	and	Source	NAT	sections)	but	it	is	limited	to
translating	only	one	address	to	another.	Here	is	an	example:

	

	

Destination	NAT
This	is	a	translation	of	the	destination	address	of	an	inbound	packet	that	enters	a
router’s	interface	and	translates	the	destination	address	before	sending	it	out	on
the	egress	interface.	The	router	knows	where	to	send	the	packet	based	on	the
translated	address	that	has	been	configured	(not	the	original	one).	In	the
destination	NAT	‘rule’	you	define	the	original	destination	IP	address	and
possibly	a	destination	port	as	well	as	the	translated	address	(and	perhaps	port)
that	packets	will	be	routed	to.	Destination	NAT	can	only	be	used	with	inbound
traffic	that	enters	a	router’s	interface.
	

Here	is	an	example	of	two	destination	NATs	operating	on	a	per	port	basis;
	

	

	

The	most	common	use	of	Destination	NAT	is	when	you	have	a	service	on	your
internal	network	that	you	want	to	allow	access	to	from	the	Internet.	As	prior
diagram	shows,	clients	can	access	both	the	web	server	and	the	FTP	server	by
using	the	IP	address	10.10.10.200	and	the	address	will	be	translated	to	the

internal	addresses	depending	on	which	TCP	port	the	user	uses	in	its	request.

Source	NAT
Source	NAT	is	used	to	(you	guessed	it)	translate	the	source	address	of	outbound
packets	that	leave	a	router’s	interface.	It	does	not	matter	if	it	is	internal	or
external	traffic.	One	common	use	of	Source	NAT	is	the	translation	of	private	IP
addresses	into	a	smaller	number	of	(or	just	one)	public	IP	address.	This	is
something	most	networks	use	both	in	home	and	enterprise	environments.	Here	is
an	example	of	Source	NAT:
	

	
	

Chapter	Summary
The	primary	role	of	a	router	is	to	connect	two	or	more	networks	together.
But	there	are	several	other	functions	that	a	router	can	offer	a	network
environment	such	as	connecting	several	branch	offices	with	each	other
over	a	WAN	link	or	minimizing	network	traffic	by	creating	multiple
broadcast	or	collision	domains.
	
A	direct	route	is	a	destination	that	can	be	reached	directly	and	is	attached
to	the	LAN	segment.
	
A	router	does	not	have	a	default	gateway	since	it	is	the	door	to	other
networks.	Instead	the	router	uses	a	default	route	when	it	cannot	locate	the
specified	network	in	its	routing	table.
	
NAT	stands	for	Network	Address	Translation	and	it	is	responsible	for
translating	IP	addresses.	In	most	cases	we	translate	an	address	from	a
public	IP	address	to	a	private	IP	address	and	vice	versa.

	

Chapter	Review
In	order	to	test	your	knowledge	and	understanding	of	this	chapter,	please	answer
the	following	questions.	You	will	find	the	answers	and	explanations	of	the
questions	at	the	end	of	this	chapter.

	
1.	 Which	protocols	are	link-state	protocols?

	
a.	 RIP

	
b.	 IS-IS

	
c.	 OSPF

	
d.	 BGP

	
	

2.	 True	or	false:	Distance-vector	protocols	build	a	map	of	the	entire	network
and	make	routing	decisions	based	on	this	map.
	
a.	 True

	
b.	 False

	
	

3.	 In	what	direction	is	static	NAT	used?
	
a.	 Incoming	direction

	
b.	 Outgoing	direction

	
c.	 Both	incoming	and	outgoing

	
	

4.	 True	or	false:	Destination	NAT	can	be	used	for	incoming	and	outgoing
packets.
	
a.	 True

	
b.	 False

	

Chapter	Review:	Answers
You	will	find	the	answers	to	the	chapter	review	questions	below:

	
1.	 The	correct	answers	are:	B	and	C

	
a.	 RIP

	
b.	 IS-IS

	
c.	 OSPF

	
d.	 BGP

	

IS-IS	and	OSPF	are	both	link-state	protocols	and	they	map	the	entire	network
based	on	the	information	they	receive	from	other	routers.	RIP	is	a	distance
vector	protocol	and	does	not	build	up	a	map	of	the	network.	BGP	is	a	path-
vector	protocol	which	makes	decisions	based	on	paths	and	network	policies.

	
2.	 The	correct	answer	is:	B

	
a.	 True

	
b.	 False

	

Distance	vector	protocols	do	not	build	a	map	of	the	network,	instead	they	use
hop	count	to	determine	the	best	next	hop.

	
3.	 The	correct	answer	is:	C

	
a.	 Incoming	direction

	
b.	 Outgoing	direction

	
c.	 Both	incoming	and	outgoing

	
Static	NAT	is	a	one-to-one	mapping	which	means	that	it	uses	both	source	NAT
and	destination	NAT.	The	communication	is	therefore	both	incoming	and
outgoing.

	
4.	 The	correct	answer	is:	B

	
a.	 True

	
b.	 False

Destination	NAT	can	only	be	used	for	incoming	connections.

8.	The	Application	Layer	in	Detail
	

Many	people	get	confused	by	the	application	layer	and	think	that	the	application
is	an	actual	application	like	Microsoft	Word	or	Internet	Explorer;	this	is	not	the
case.	The	application	layer	acts	as	a	framework	for	the	actual	applications	that
run	on	top	of	it.
	

Some	examples	of	application	layer	protocols	are:
	

SSH Secure	Shell
FTP File	transfer	protocol
HTTP Hyper	Text	Transfer	Protocol
DNS Domain	Name	System
	
In	this	chapter	we	will	examine	the	most	common	and	fundamental	applications
that	are	used	in	an	Application	Delivery	Solution.
	

Hypertext	Transfer	Protocol	(HTTP)
HTTP	is	the	application	protocol	which	today	forms	the	basis	of	a	significant
amount	of	the	traffic	on	the	internet	and	probably	within	most	business	networks
too.	HTTP’s	primary	purpose	is	to	exchange	content	(web	pages,	images,	files	or
just	about	anything	else)	between	hosts,	typically	from	a	server	to	a	client.	HTTP
Functions	using	a	simple	request	and	response	messaging	mechanism,	with	the
client	requesting	a	resource	(some	content)	and	the	server	responding	with	that
resource.	This	basic	functionality	has	been	built	upon	through	various	means	to
provide	today’s	sophisticated,	dynamic	websites.	HTTP	operates	at	the
application	layer	(seven)	of	the	OSI	Model.

	
HTTP	Is	pretty	old,	with	the	first	documented	version	appearing	in	1991
(RFC2068	states	it	had	been	used	since	1990)	and	the	current	version	last	being
updated	in	1999.	V2.0	is	currently	in	development	and	will	likely	be	released	in
late	2014.	HTTP	was	created	by	a	team	led	by	Tim	Berners-Lee,	who	is	credited
with	inventing	the	World	Wide	Web.	F5	Networks	itself	was	formed	to	create	a
product	to	specifically	load	balance	HTTP	traffic	for	sites	on	the	World	Wide
Web.

	
HTTP	is	considered	to	be	a	stateless	protocol	in	that	the	client	and	server	do	not
store	state	data	in	any	way.	A	request	is	sent	and	a	response	received;	this
‘transaction’	has	no	impact	on	future	ones,	nor	do	earlier	ones	affect	this	one.
This	is	why,	for	instance,	the	HTTP	version	number	is	sent	in	every	request	(and
response)	along	with	other	data	(in	the	form	of	headers	–	more	on	these	shortly)
such	as	User-Agent,	Host,	Cache-Control	and	Accept-Encoding.	Cookies	are
used	to	provide	a	form	of	state	when	required	(more	on	Cookies	soon).

	
Here’s	what	a	simple	HTTP	request	(for	a	part	of	the	HTTP	v1.1	RFC)	looks
like;

	
GET	/Protocols/rfc2616/rfc2616-sec3.html	HTTP/1.1\r\n	<<	The	Request	Line	(Method,
URL	&	Version)
Host:	www.w3.org\r\n	<<	The	Server	Hostname
User-Agent:	Mozilla/5.0\r\n	<<	The	User-Agent;	information	on	the	client	browser

http://tools.ietf.org/html/rfc2068

Accept:	text/html\r\n
Accept-Language:	en-US\r\n
Connection:	keep-alive\r\n	<<	Indicates	a	Persistent	Connection
	
	
And	here’s	what	the	response	could	look	like;

	
HTTP/1.1	200	OK\r\n	<<	The	Status	Line	(Version,	Status	Code	&	Reason	Phrase)
Date:	Tue,	04	Feb,	2014	10:33:40	GMT\r\n	<<	The	date	and	time	on	the	server
Server:	Apache/2\r\n	<<	Information	on	the	HTTP	server
Content-Length:	35041\r\n	<<	The	length	of	the	content	sent	(minus	any	Headers)
Content-Type:	text/html\r\n	<<	The	type	of	content	sent
\r\n
[The	content	follows	from	this	point...]
	
	

You’ll	note	that	each	line	of	HTTP	is	terminated	with	the \r and \n
metacharacters,	indicating	a	Carriage	Return	and	Line	Feed	respectively;
essentially	a	new	line.	This	is	also	used	to	insert	a	blank	line	between	the	last
Header	and	the	actual	content	body,	to	delimit	the	two.
	

These	diagrams	provide	a	visual	representation	of	both	a	successful	and
unsuccessful	HTTP	request;

	

	
Multiple	transactions	between	the	same	client	and	server,	completed	over	the
same	established	TCP	connection	are	considered	a	session.	A	session	may	also
comprise	of	multiple	TCP	connections	(again	between	the	same	client	and
server)	to	improve	performance.	Sessions	rely	on	HTTP	Persistent	Connections,
discussed	shortly.

	
A	session	over	a	single	TCP	connection	looks	like	this;

	

	

URLs
Uniform	Resource	Locators	(URLs)	are	(as	the	name	suggests)	a	standard
naming	scheme	used	to	identify	the	location	of	resources	on	the	internet.	A
resource	is	commonly	content	of	some	kind	(a	file	or	a	web	page)	but	can	also	be
a	service	or	process	to	be	manipulated	in	some	way.

	
URLs	are	not	specific	to	HTTP	and	are	a	subset	of	Uniform	Resource	Identifiers
(URIs).	It’s	rather	confusing	but	a	URL	is	a	type	of	URI	which	includes	the
access	method	and	location	of	a	resource,	the	resource	itself	is	also	specified	as	a
URI,	hence,	a	URL	is	a	URI	and	also	contains	a	URI	(as	you’ll	see).	The	HTTP
v1.1	standard	references	the	URI	(and	thus	URL)	syntax	and	semantics	specified
in	RFC2396.

	
HTTP	Related	URLs	are	composed	of	the	following	components;
	

URL	Protocol	Scheme	–	the	protocol	used	to	locate	and	access	a	resource,
such	as; http:// or https://.

	

Server	Location	(Host)	–	the	Fully	Qualified	Domain	Name	(FQDN)	aka
the	hostname	of	the	server	that	holds	the	resource	(where	it	can	be	located),
for	example: www.google.com.	This	includes	any	port	specification
following	the	hostname,	such	as 	:8800 	and	is	case	insensitive.	An	IP
address	can	be	used	but	this	should	be	avoided	where	possible.

	

Path	or	Uniform	Resource	Identifier	(URI)–	the	remaining	part	of	the	URL
after	the	Scheme	and	Host,	for	example: /test/index.html?username=test .	The
most	basic,	shortest	possible	URI	is	‘ / ’.	The	URI	is	composed	of	a	Path
and	possibly	a	Query	or	other	URI	elements;

	
Path	–	the	location	of	a	specific	resource	on	the	Host,	for
example: /test/index.html
	

http://tools.ietf.org/html/rfc2396

Query	–	a	string	(normally	prefixed	with	(but	not	including)	the ?
symbol)	that	provides	information	to	the	resource,	for	example: ?
username=test .

	

As	you	can	see	in	the	HTTP	request	example	earlier	in	this	section,	the	URL	you
type	into	a	browser	is	designed	to	be	user	friendly	and	is	‘converted’	to	meet	the
HTTP	standard,	with	the	URI	being	sent	in	the	Request	Line,	the	Server
Location	in	the	Host	Header	and	the	Protocol	Scheme	not	appearing	at	all.
	

There	are	two	types	of	URLs;	absolute	and	relative.	An	absolute	URL	includes
the	three	elements	discussed	previously,	the	Protocol	Scheme,	Server	Location
and	URI.	A	relative	URL	contains	only	the	URI,	or	possibly	only	part	of	the
URI.
	

When	a	relative	URL	is	used	the	browser	client	uses	the	protocol	scheme	of	the
current	page	or	resource	that	contains	the	relative	link.	The	browser	will	also
include	the	Server	Location	(the	hostname)	and	any	missing	parts	of	the	URL
based	on	the	so	called	Base	URL	of	the	current	page	or	resource	that	contains
the	relative	link.	For	example	if	the	URL	of	the	page	containing	the	relative
URL	is	http://www.example.com/test/index.html	and	the	relative	URL	is
testpage.html	the	Base	URL	is	http://www.example.com/test/	and	the	browser
will	dynamically	build	the	URL	as	this:
http://www.example.com/test/testpage.html.
	

Versions
There	are	currently	three	HTTP	versions,	the	most	recent	being	v1.1;	within	the
protocol	itself	the	version	is	expressed	as: HTTP/x.x (HTTP/1.1 	for	instance).
The	version	is	the	third	and	last	piece	of	data	specified	in	the	Request	Line	in	a
request	and	the	first	in	the	Status	Line	of	a	response.	The	Request	Line	is	the
first	line	of	a	HTTP	request	and	the	Status	Line	the	first	of	response	–	take	a
look	at	the	request	and	response	examples	earlier	in	this	section	to	see	what	they
look	like.	All	responses	should	use	the	same	version	specified	in	the	request.
Details	of	each	version	are	as	follows;
	

HTTP	v0.9
	

Documented	in	1991	here:
http://www.w3.org/Protocols/HTTP/AsImplemented.html
	
The	first	documented	version
	
The	only	supported	method	is	GET	(we’ll	cover	methods	shortly)
	
The	only	supported	response	content	format	is	HTML
	

HTTP	v1.0

	
Documented	in	RFC1945	in	1996
	
Added	support	for;

	
HTTP	Headers	(which	allows	for	most	of	the	following	features	in
this	list)
	
Content	encoding	(compression)

	
Content	types

	
User	agents

	
The	HEAD	and	POST	methods

	
Basic	authentication

	
Response	status	codes

	
Caching	support	features

	
Any	mime	compatible	response	content	format	is	supported

http://www.w3.org/Protocols/HTTP/AsImplemented.html
http://tools.ietf.org/html/rfc1945

	
HTTP	v1.1

Documented	in	RFC2068	in	1997
	
Updated	in	RFC2616	in	1999
	
Reworded	and	split	into	RFC7230,	RFC7231,	RFC7232,	RFC7233,
RFC7234	and	RFC7235	in	2014
	
The	version	in	general	use	today
	
Added	support	for;

	

The	CONNECT,	DELETE,	OPTIONS,	PUT	and	TRACE	methods
	
The	Upgrade	request	header	(used	by	The	WebSocket	Protocol	for
instance)

	
Caching	support	improvements	(for	better	performance)

	
Range	requests	(partial	object	requests	allowing	for	pausing	and
restarting	a	download	for	instance)

	
The	100	Continue	status	code	and	23	others	for	more	accurate	error
reporting

	
Compression	improvements	(for	better	performance)

	
Persistence	connections	and	Pipelining	to	improve	performance

	
The	Host	header	(allowing	a	single	server	to	host	multiple	websites
using	a	single	IP	address)

	
Digest	and	proxy	authentication

	
Cookies

http://tools.ietf.org/html/rfc2068
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc7231
http://tools.ietf.org/html/rfc7232
http://tools.ietf.org/html/rfc7233
http://tools.ietf.org/html/rfc7234
http://tools.ietf.org/html/rfc7235

	
Content	negotiation	(preferred	language	etc.)
	

The	HTTP/2.0	standard	is	currently	due	to	be	ratified	in	early	2015.

	

Status	Codes
HTTP	Status	Codes	are	used	to	indicate	to	a	client	(in	a	response),	how	the
server	has	handled	and	fulfilled	a	request	(or	otherwise).	They	provide	a	form	of
status,	success	and	error	reporting	for	both	the	server,	which	includes	these
codes	in	its	logs	and	the	client	that	receives	them.	Status	Codes	are	formed	of	a
three	digit	numerical	Status	Code	and	a	related	Reason	Phrase.	The	first	of	those
three	digits	defines	the	Class	of	Response,	those	classes	being;
	

1xx	–	Informational
	
2xx	–	Success
	
3xx	–	Redirection
	
4xx	–	Client	Error
	
5xx	–	Server	Error

	
The	Reason	Phrase	is	a	brief,	human	readable	description	of	the	meaning	of	the
Status	Code.	Note	the	RFC	provides	recommendations	but	allows	for	alternative
text	to	be	used.	Here	are	a	few	examples	of	common	Status	Codes,	the	related
RFC	recommended	Reason	Phrase	and	their	meaning;

	
200	–	OK	–	The	request	was	successful
	
302	–	Found	–	Used	to	redirect	to	a	different	URL
	
400	–	Bad	Request	–	The	client’s	request	wasn’t	understood
	

401	–	Unauthorised	–	Used	to	indicate	authentication	is	required
	
404	–	Not	Found	–	The	requested	resource	doesn’t	exist	on	the	server

	

The	Status	Code	is	the	second	piece	of	data	specified	in	the	Status	Line,	the
Reason	Phrase	the	third	and	last;	the	first	is	the	version.	Take	a	look	at	the
request	and	response	examples	earlier	in	this	section	to	see	what	they	look	like.
	

Methods
The	HTTP	Method	is	specified	in	client	requests	and	is	the	method	(or	action)	to
be	performed	on/with	the	resource	specified	by	the	URL.	The	two	most	common
Methods	are	GET,	which	simply	retrieves	the	resource	and	POST	which	is	used
to	append	data	to	a	resource	(posting	a	comment	to	a	web	page	for	instance).	
	

The	Method	is	the	first	piece	of	data	specified	in	the	Request	Line,	as	shown	in
the	request	example	earlier	in	this	section.	Other	Methods	include;
	

HEAD	–	similar	to	GET	but	the	server	should	not	respond	with	the
message	body	(the	actual	resource	requested),	only	the	Headers	that	would
be	sent	if	it	did	(as	it	would	with	a	GET)
	
PUT	–	a	request	for	the	server	to	store	the	resource	sent	by	the	client	at	the
URI	specified
	
OPTIONS	–	a	request	generally	used	to	ascertain	the	capabilities	of	a
server	in	respect	of	the	resource	specified	or	in	general	(when	used	with	a
URI	of	*).	Most	servers	will	not	respond	to	OPTIONS	requests	as	this	is
widely	considered	a	security	risk
	
DELETE	–	a	request	for	the	server	to	delete	the	resource	at	the	URI
specified.	As	you	can	imagine,	this	is	rarely	used	for	user	related	requests
(more	often	with	APIs)
	
TRACE	–	a	request	for	the	server	to	‘reflect’	the	request	back	to	the	client

in	the	body	of	it’s	response;	a	loopback	of	sorts.	Most	servers	will	not
respond	to	OPTIONS	requests	as	this	is	widely	considered	a	security	risk
	
CONNECT	–	used	with	proxies	that	can	dynamically	switch	to	being
employed	to	establish	a	tunnel	between	a	client	and	server,	typically
involving	SSL
	
	

HTTP	Header	Features
Headers	and	their	values	(also	known	as	Header	Fields)	are	used	for	a	wide	and
varied	range	of	purposes	within	HTTP	and	are	typically	present	in	both	request
and	response	messages.	In	the	majority	of	cases	the	Headers	used	in	a	response
are	different	to	those	used	in	a	request.	Headers	define	the	parameters	that	are
used	and	exchanged	in	messages	between	client	and	server	when	using	almost
any	HTTP	feature	(the	obvious	exceptions	being	the	URL,	Version,	Status	Code
and	Method).	HTTP	Headers	were	introduced	in	the	HTTP/1.0	standard.
	

Headers	are	typically	colon	and	trailing	space	separated	name-value	pairs;	where
multiple	values	exist	those	values	are	normally	comma	separated	(no	spaces).
This	is	a	general	guide	and	is	not	always	the	case;	each	header	type	may	have	its
own	specific	formatting.	Headers	appear	directly	after	the	Request	or	Status	Line
and	before	the	content	body;	the \r and \n 	metacharacters	are	used	to	delimit
between	these	and	each	Header.
	
Common	v1.1	request	Headers,	example	values	and	their	functionality	are
described	next;

	
Host:	www.example.com\r\n	–	required	in	a	HTTP	v1.1	request,	this	header
contains	the	hostname	of	the	server	as	specified	in	the	Server	Location
element	of	the	URL.	This	header	allows	a	single	server	to	host	multiple
websites	using	the	same	IP	address	but	different	hostnames,	without
requiring	the	use	of	a	dedicated	IP	address	or	TCP	port	for	each

	
User-Agent:	Mozilla/5.0	(Windows	NT	6.1;	Win64;	x64;	rv:24.0)	Gecko/20100101

Firefox/24.0	Waterfox/24.0\r\n 	–	provides	details	on	the	software	used	by	the
user	or	system	when	making	the	request.	In	many	cases	this	will	be	a	fairly
long	string	indicated	the	version	of	the	browser	used

	

Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\n –	a
comma	separated	list	of	Content	Types	(media	formats)	that	will	be
accepted	in	the	content	body	of	the	server	response
	
You’ll	note	in	this	example	and	elsewhere	that	some	values	have	a	suffix
like	this ;q=X.X –	this	is	a	qvalue	used	to	indicate	to	a	server	a	preference
for	some	values	over	others,	when	multiple	header	values	are	present.	If
none	is	specified	(and	it’s	relevant)	a	value	of	1	is	assumed;	1	indicates	the
most	preferred	value	(or	values),	lower	preferences	are	expressed	as
decimal	tenths	of	1.	In	the	priorexample text/html,application/xhtml+xml	have
a	qvalue	of	1	and	are	most	preferred, 	application/xml	is	not	as	preferred	and
has	a	qvalue	of	0.9	and 	*/*	(any	Content	Type)	is	least	preferred	and	has	a
qvalue	of	0.8.
	
	
Accept-Language:	en-US,en;q=0.5\r\n	–	specifies	the	language(s)	the	client
software	would	prefer	are	used	in	response	content	body

	

Accept-Encoding:	gzip,	deflate\r\n	–	a	comma	and	trailing	space	separated	list
of	Content	Encodings	(compression	methods)	that	will	be	accepted	in	the
server	response	content	body

	

Connection:	keep-alive\r\n	–	indicates	to	the	server	that	a	connection	is
persistent	(see	the	next	section	for	more	information).	The keep-alive 	value
isn’t	actually	a	requirement	of	v1.1	(persistent	connections	are	assumed)
and	was	an	unofficial	extension	of	the	HTTP	v1.0	standard

	

Connection:	close\r\n	–	indicates	to	the	server	that	a	connection	should	be
closed	(see	the	next	section	for	more	information).	Valid	in	the	HTTP	v1.0
and	v1.1	standards

	
If-Modified-Since:	Wed,	01	Sep	2004	13:24:52	GMT\r\n 	–	only	satisfy	the
request	if	the	resource	has	been	modified	after	the	specified	date	and	time.
If	the	resource	hasn’t	been,	the	server	will	respond	with	a	simple	304	Not
Modified	Status	Code	and	Reason	Phrase

	
Common	v1.1	response	Headers,	example	values	and	their	functionality	are
described	next;

	
Date:	Wed,	01	Sep	2004	13:24:52	GMT\r\n 	–	nearly	always	required	in	a
HTTP	v1.1	response,	the	date	and	time	a	response	was	generated,	in	the
format	specified	by	RFC1123

	
Cache-Control:	private\r\n –	specifies	whether	the	response	can	be	cached	or
not	(and	related	parameters	where	necessary)	by	any	caching	mechanisms
between	and	including	the	client	and	server	(browser	caches,	network
caches,	proxies	and	the	like).	In	this	example,	the	response	may	not	be
cached	by	a	shared	cache	but	can	be	by	a	user	specific	one	(such	as	the
user’s	browser)
	
Connection:	keep-alive\r\n	–	indicates	to	the	client	that	a	connection	is
persistent	(see	the	next	section	for	more	information).	The keep-alive 	value
isn’t	actually	a	requirement	of	v1.1	(persistent	connections	are	assumed)
and	was	an	unofficial	extension	of	the	HTTP	v1.0	standard

	
Connection:	close\r\n	–	indicates	to	the	client	that	a	connection	should	be
closed.	Valid	in	the	HTTP	v1.0	and	v1.1	standards

	

Content-Encoding:	gzip\r\n –	specifies	the	Content	Encoding	(compression
method)	that	has	been	applied	to	the	response	content	body	(not	the	Status
Line	or	Headers)

	

http://tools.ietf.org/html/rfc1123

Content-Type:	text/html;	charset=UTF-8\r\n –	the	Content	Type	(media	format)
of	the	response	content	body

	

Content-Length:	542\r\n –	the	length	of	the	response	content	body	(this	does
not	include	the	Status	Line	or	Headers)	in	octets	(an	octet	is	eight	bits	or
one	byte)

	

HTTP	Persistent	Connections
More	commonly	known	as	HTTP	Keepalives,	Persistent	Connections	are	a
performance	enhancement	introduced	in	HTTP	v1.1.	They	allow	multiple
requests	and	responses	to	be	sent	and	received	(one	after	the	other)	over	the
same	persistent	TCP	connection,	rather	than	a	new	connection	being	established
for	each	request	and	response	transaction.	Without	Persistent	Connections,	every
single	request	results	in	a	TCP	connection	being	established	and	then	closed,	as
follows;
	

	

With	Persistent	Connections,	multiple	requests	use	the	same	TCP	connection,	as
follows;
	

	

Not	needing	to	perform	the	TCP	three	way	handshake	before	sending	each
request	and	shutting	down	the	connection	after	each	response	clearly	saves	both
time	and	computing	resources,	particularly	where	SSL/TLS	is	used.	It	also
allows	for	Pipelining	(covered	in	the	later	Application	Delivery	Platforms
chapter),	reduces	latency	and	congestion	(a	single	TCP	three	way	hand	shake	for
multiple	requests	rather	than	one	per	request)	and	reduces	server	resource	usage
as	fewer	connection	establishment	and	closure	tasks	need	to	be	performed.
Those	connecting	over	lossy	and/or	high	latency	networks	benefit	the	most.
	

Persistence	support	is	assumed	in	HTTP	v1.1;	with	v1.0	it	is	an	unofficial
extension	not	actually	specified	in	the	RFC	and	makes	use	of	the	Connection
Header	as	follows;

	
Connection:	keep-alive\r\n	–	indicates	to	the	client	or	server	(depending	on
whether	the	header	is	contained	in	a	request	or	response)	that	a	connection
is	persistent

	
HTTP	Persistent	Connections	are	supported	by	all	modern	web	browsers.
Although	it	may	seem	similar	to	HTTP	Pipelining,	it	is	not	as	a	request	must	be
fulfilled	before	the	next	can	be	sent.

	
Despite	the	fact	it’s	not	needed,	you’ll	often	see	this	Header	and	value	even	in
HTTP	v1.1	requests.

	

Cookies
Cookies	provide	a	mechanism	to	record	state	in	relation	to	HTTP	client
connections	to	specific	websites;	this	state	information	is	stored	by	the	client
rather	than	the	server	(despite	it	being	acted	upon	by	the	server).	Cookies	are	not
part	of	any	HTTP	standard	and	were	first	formalised	in	RFC2109	in	1997.	This
was	superseded	by	RFC2965	in	2000	which	in	turn	was	superseded	by	the
current	standard	RFC6265	created	in	2011.

	
This	state	information	can	be	used	in	many	ways	server-side	including	for
session	management	(Persistence	for	instance),	personalisation	and	tracking.	The
potential	security	and	privacy	risks	associated	with	Cookies	have	been	widely
debated	ever	since	their	introduction	and	in	the	European	Union	websites	are
required	by	law	to	obtain	user	consent	to	store	Cookies.	Cookies	may	eventually
be	superseded	by	client	fingerprinting	and	other	methods.

	
Cookies	are	created	on	the	client	using	the	Set-Cookie	HTTP	Header	in
responses,	the	values	and	attributes	of	which	depend	on	what	information	is
being	stored,	although	there	are	a	number	of	‘standard’	attributes	such	as
Domain,	Path	and	Expires.	Here’s	an	example	of	one	of	the	Cookies	Google
sends	when	connecting	to	www.google.co.uk;

http://tools.ietf.org/html/rfc2109
http://tools.ietf.org/html/rfc2965
http://tools.ietf.org/html/rfc6265
http://www.google.co.uk

	
Set-Cookie:
PREF=ID=72d5f8d1334bd850:FF=0:TM=1391620617:LM=1391620617:S=OeYDjcs5bpS3ntMu;
expires=Fri,	05-Feb-2016	17:16:57	GMT;	path=/;	domain=.google.co.uk\r\n

	
Cookies	are	returned	to	the	Server	using	the	Cookie	Header;	note	the	attributes
are	not	included	as	they	relate	to	the	Cookie’s	storage	and	use	on	the	client,	not
the	state	information	the	server	requires;

	
Cookie:
PREF=ID=72d5f8d1334bd850:FF=0:TM=1391620617:LM=1391620617:S=OeYDjcs5bpS3ntMu\r\n
	

Further	Reading
I’d	highly	recommend	you	simple	read	through	the	relevant	parts	of	RFC2616
for	further	information	on	any	of	the	subjects	covered	by	the	exam	or	to	learn
more	in	general	about	the	protocol.	The	RFC	is	well	written	and	fairly	easy	to
understand	compared	to	most.	Even	better,	it	was	split	into	multiple	RFCs	and
the	language	clarified	in	2014,	as	follows;
	

RFC7230	–	HTTP/1.1:	Message	Syntax	and	Routing
	
RFC7231	–	HTTP/1.1:	Semantics	and	Content
	
RFC7232	–	HTTP/1.1:	Conditional	Requests
	
RFC7233	–	HTTP/1.1:	Range	Requests
	
RFC7234	–	HTTP/1.1:	Caching
	
RFC7235	–	HTTP/1.1:	Authentication
	

If	you’d	rather	something	with	better	formatting	and	more	explanatory	text	and
context,	I’d	recommend	this	rather	expensive	but	very	comprehensive	book;

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc7230
http://tools.ietf.org/html/rfc7231
http://tools.ietf.org/html/rfc7232
http://tools.ietf.org/html/rfc7233
http://tools.ietf.org/html/rfc7234
http://tools.ietf.org/html/rfc7235

	
HTTP	The	Definitive	Guide	–	David	Gourley,	Brian	Totty	et	al.	–	O’Reilly
	

HTTPS	(Secure	HTTP)
Hyper	Text	Transfer	Protocol	Secure	or	HTTPS	is	just	like	HTTP	except	it	is
used	together	with	Secure	Sockets	Layer	(SSL)	and	Transport	Layer	Security
(TLS).	It	provides	a	security	layer	on	top	of	the	HTTP	protocol	which	encrypts
data,	ensures	the	identity	of	both	devices	and	makes	sure	that	data	has	not	been
modified	during	transit.	HTTPS	is	a	standard	that	is	highly	used	by	online
banking	and	online	shopping.	When	you	use	HTTPS,	instead	of	the	original
http://	it	uses	the	https://	prefix.	It	also	operates	on	port	443	instead	of	port	80.

	

Domain	Name	System	(DNS)
One	of	the	cornerstones	in	making	the	Internet	work	is	the	Domain	Name	System
(DNS).	Computers	are	not	designed	to	communicate	with	natural	language	and
understand	what	www.google.com	is.	These	types	of	addresses	have	been
designed	to	make	it	easier	for	people	to	remember	the	addresses	of	the	different
websites	and	hosts	they	usually	visit	or	use.	What	DNS	does	is	translate	a
domain	name	like	www.google.com	into	the	IP	address	corresponding	to	the
server	that	hosts	www.google.com.

DNS	was	designed	in	1983	at	the	University	of	California	by	Paul	Mockapetris.
In	November	1983,	the	Internet	Engineering	Task	Force	(IETF)	published	the
first	specification	of	the	protocol	in	RFC	882	and	RFC	883.	The	first	update	of
the	specification	was	in	November	1987	by	RFC	1034	and	RFC	1035	and	is	still
the	most	current	version.
When	the	Internet	was	first	developed	it	was	so	small	that	there	was	no	need	for
a	distributed,	global	DNS	service.	Instead	every	computer	would	have	a	local
text	file	called	“hosts”.	The	hosts	file	would	contain	a	simple	list	of	the	names
and	IP	addresses	of	every	host	on	the	network	(which	was	very	small).	When	a
new	computer	was	added,	every	network	administrator	would	have	to	update
their	version	of	the	file	on	every	relevant	host.	It	was	not	until	the	Internet	grew
much	larger	that	the	need	for	DNS	arose.	DNS	is	part	of	the	application	layer
and	works	on	TCP	and	UDP	port	53,	with	use	over	UDP	the	most	common	at
present.

	
The	domain	name	system	is	divided	into	domains	that	work	in	a	hierarchical
structure.	This	is	very	similar	to	what	a	directory	tree	looks	like	in	a	file	system.
This	hierarchical	namespace	is	beneficial	because	it	allows	each	domain	to	be
managed	by	a	separate	organization,	individual	or	administrator	(if	necessary).	It
also	helps	reduce	the	risk	of	duplicate	names.	If	you	had	only	a	‘flat’	namespace,
the	more	clients	you	add	to	the	network	the	greater	the	risk	of	users	creating
duplicate	names	grows.	With	the	hierarchical	structure	every	host	or	domain
exists	in	a	dedicated	namespace	and	is	unique.	For	instance,	two	hosts	can	have
the	same	host	name	as	long	as	they	are	in	two	separate	namespaces.
server1.toronto.com	and	server1.chicago.com	have	the	same	hostname	but	since
they	are	in	two	separate	namespaces	(domains)	they	are	still	unique.

	

https://tools.ietf.org/html/rfc882
https://tools.ietf.org/html/rfc883
https://tools.ietf.org/html/rfc1034
https://tools.ietf.org/html/rfc1035

At	the	top	of	the	namespace	you	have	the	root	which	is	represented	by	a	dot.
Further	down	the	namespace	you	have	domains	which	are	similar	to	directories
and	sub-domains	which	are	similar	to	sub-directories	and	so	on.	Hosts	are	the
smallest	(least	significant)	piece	of	the	namespace	and	represent	a	file	in	a	file
system.	Following	you	will	see	an	example	of	a	small	part	of	the	internet	DNS.
	

	

In	order	to	maintain	and	keep	updated	records	in	the	DNS	namespace,
administrators	all	over	the	Internet	are	responsible	for	updating	DNS	records
when	there	has	been	some	kind	of	change.	Often	it	is	an	ISP	or	some	another
large	organization	that	is	responsible	for	this	administration.	Google	for	instance
has	its	own	DNS	which	uses	the	IP	address	8.8.8.8.
	

Note	DNS	is	not	only	used	on	the	Internet;	it	is	also	used
extensively	on	internal	networks	by	small,	medium	and	large
companies	too.

	
When	assigning	a	domain	name	that	is	going	to	be	used	on	the	Internet,	you
usually	use	the	host	portion	to	identify	the	role	of	a	server	although	you	don’t
have	to	do	this.	One	example	is	to	create	a	www	record	if	the	server	is	a	web
server.	Here	is	an	example	of	how	it	looks.

	
	

	

The	full	address	(the	Fully	Qualified	Domain	Name	(FQDN))	of	the	webserver
would	be	www.test.com.	The	root	dot	(.)	is	hidden	from	the	user,	behind	the
scenes,	where	it	is	actually	used.
	

Most	companies	and	organizations	use	DNS	in	their	internal	environment	as
well,	in	order	to	map	IP	addresses	to	server	names	and	internal	resources.	The
name	standards	of	internal	resources	vary	and	depend	on	the	company,	policy
and/or	how	an	administrator	has	designed	things.	This	domain	namespace	is
created	for	internal	purposes	only	and	is	the	“local	domain”;	it	does	not	need	to
be	globally	unique.	Every	domain	that	has	the	.local	namespace	is	only	used	for

internal	purposes	and	therefore	cannot	be	used	on	the	internet.
	

Top-Level	Domains
The	name	closest	to	the	root	dot	(.)	is	called	a	top-level	domain	(TLD).	There	are
a	number	of	different	TLDs;	traditionally	limited	to	country-specific	allocations
(such	as	.uk,	.us,	.es	and	so	on)	and	a	small	number	of	‘global’	or	generic
domains,	such	as;

	
.com	–	Commercial	Organizations
	
.org	–	Non-commercial	Organizations	(charities	etc.)
	
.gov	–	Government	institutions
	
.net	–	Networking	related	organizations	(although	now	‘general	purpose)
	

Global	domain	names	can	typically	be	used	by	anyone.	Others,	such	as	.gov	on
the	other	hand	are	reserved	and	can	only	be	used	by	suitably	certified
organizations.	The	Internet	Corporation	for	Assigned	Names	and	Numbers
(ICANN)	are	responsible	for	the	accreditation	of	domain	name	registrars	as	well
as	for	any	changes	regarding	the	overall	namespace	such	as	adding	more	top-
level	domain	names	which,	after	a	long	period	of	stagnation,	are	rapidly	growing
in	number.	Registrars	allocate	domain	names	for	(or	within)	a	particular	TLD	on
behalf	of	ICANN.

	

Second-Level	Domains
To	obtain	a	second-level	domain	you	have	to	purchase	the	rights	to	it	from	a
specific	registry.	For	as	long	as	you	pay	the	fee	for	a	domain	you	‘own’	you
have	exclusive	rights	to	that	domain	name.	The	registry	is	also	responsible	for
publishing	information	on	who	owns	the	name	and	three	contacts	within	the
owning	organization;	an	administrative	contact,	a	billing	contact,	and	a	technical
contact.	The	administrator	who	buys	the	name	can	create	as	many	subdomains
and	host	records	within	the	second	level	domain	without	needing	to	inform	the
top-level	domain	registry.	For	instance,	if	you	own	testing.org	you	can	create

host	records	for	www.testing.org,	crazyserver.testing.org,
www.madness.testing.org	or	whatever	else	you’d	like.
	

Zones	and	Resource	Records	(RRs)
A	lot	of	companies	have	branch	offices	in	many	different	countries	on	several
continents.	Many	of	which	have	their	own	IT	department	which	manages
network	devices	and	servers	in	that	office.	In	order	to	easily	manage	DNS
records	related	to	them,	we	need	to	be	able	to	divide	domains	so	that	we	can
delegate	responsibility	to	the	administrator	of	each	office.

	
In	order	to	do	this	we	separate	domains	into	zones.	However	this	is	only	possible
when	we	have	a	3-level-domain	namespace.	In	the	following	illustration
example.com	has	delegated	two	subdomains	and	you	can	see	that	the	New	York
site	has	its	subdomains	and	hosts	in	one	zone	and	Tokyo	site	is	part	of	its	own
zone	with	its	own	subdomains.	This	means	that	the	administrator	in	the	New
York	site	manages	its	subdomains	and	hosts	and	the	administrator	in	Tokyo
administrates	their	subdomains	and	hosts	in	Tokyo.	Each	zone	must	be
represented	by	a	DNS	server	(or	more)	that	is	the	authority	for	that	zone.	One
DNS	server	can	maintain	several	zones	which	means	that	you	will	only
theoretically	need	two	(one	master	and	one	backup)	but	in	terms	of	latency	and
delays	you	may	want	to	set	up	a	DNS	server	in	for	example	Tokyo	as	well.
	

	

	

Resource	records	are	so-called	database	entries	that	the	DNS	servers	store	and
use.	These	contain	information	about	the	hosts	in	a	domain	and	its	subdomains.
There	are	several	different	kinds	of	resource	records,	see	the	more	common	ones
next;
	

SOA	Record	(Start	of	Authority)	–	This	is	used	to	indicate	that	this
DNS	server	is	the	authoritative	source	for	information	regarding	the
zone.	Each	zone	has	a	SOA	record	and	there	can	only	be	one	per	zone.
	
NS	Record	(Name	Server)	–	This	record	represents	a	DNS	server	in	the
zone	and	it	does	not	matter	if	the	server	is	a	primary	DNS	server	or	a
secondary.	Each	DNS	server	has	to	have	a	NS	record.

	
A	Record	(Host	record)	–	This	provides	a	name-to-address	record	that

will	convert	a	DNS	name	to	an	IP-address.	In	IPv6	the	host	record	is
represented	by	four	As	(AAAA)

	
PTR	Record	(Pointer)	–	This	provides	an	address-to-name	mapping
that	supplies	a	DNS	name	for	a	specific	address	(a	Reverse	Lookup)	in
the	in-addr.arpa	domains.	The	main	function	for	this	record	is	for
reverse	lookups	only	(see	the	next	section).

	
MX	Record	(Mail	Exchanger)	–	This	record	represents	a	host	that	can
handle	email	traffic	related	to	the	domain.	This	can	be	a	mail	gateway	or
another	mail	server.

	
CNAME	Record	(Canonical	Name)	–	This	record	is	used	to	create	an
alias	for	a	host	(A)	record.	You	use	CNAME	records	to	provide
alternative	names	for	servers.	If	you	have	a	server	with	the	host	record
server1.test.com	you	can	create	a	CNAME	record	called	www.test.com
and	both	records	would	be	usable	and	‘point’	to	the	same	IP	address.

	

Reverse	Lookups
To	explain	how	PTR	records	work	we	need	to	explain	what	the	in-addr.arpa
domain	is	and	how	it	works.	To	be	able	to	make	efficient	lookups	on	the
Internet,	DNS	uses	the	domain	in-addr.arpa.	The	in-addr.arpa	domain	is	located
beneath	the	root	of	the	DNS	tree	and	it	has	256	subdomains	which	are	named
from	the	number	0	to	255.	These	numbers	represent	the	possible	values	of	the
first	Byte	of	an	IP	address.	Each	of	these	subdomains	contains	another	set	of
subdomains	that	are	also	represented	by	the	number	0	to	255	to	represent	the
second	byte	and	so	on.	These	subdomains	represent	the	full	IP-address	space	of
4	bytes.

	

	

In	other	words,	each	host	that	has	a	DNS	name	also	has	a	PTR	record	that
represents	its	IP	address.	So	if	a	system	is	configured	with	the	IP	address
172.32.144.21	and	is	listed	in	the	DNS	server	for	test.com	with	the	host	record
www	(so	a	full	host	name	of	www.test.com)	then	there	is	also	a	PTR	resource
record	for	21.144.32.172.in-addr.arpa.	This	means	that	there	is	a	host	record
named	21	in	the	domain	144.32.172.in-addr.arpa.

	
You	might	wonder	why	the	IP	address	is	reversed	in	the	DNS	namespace;	this	is
because	in	DNS,	the	least	significant	word	comes	first.

	

How	Does	a	Computer	Resolve	a	DNS	Name	(To	An	IP	Address)?
A	user	first	enters	the	DNS	name	in	their	web	browser;	let’s	use
www.google.com	in	this	example.	If	the	local	cache	on	the	computer	does	not
already	know	the	address,	it	sends	the	request	to	the	local	DNS	resolver.	The
local	DNS	resolver	is	the	component	on	the	client	computer	that	sends	DNS
lookups	to	remote	DNS	servers.	It	generates	and	sends	queries	to	DNS	servers,
receives	the	answers	and	sends	this	information	to	applications.	In	our	case	this
is	the	web	browser.	The	local	DNS	resolver	cache	names	and	addresses	for	a
short	time	but	let’s	assumes	there	is	no	cached	entry.	The	resolver	sends	the
request	to	the	configured	remote	DNS	server.
	
The	hosts	file	is	still	used	in	some	environments	and	it	can	cause	issues	if	it	is
configured	incorrectly	because	the	hosts	file	takes	precedence	over	DNS.

	

Note	The	hosts	file	is	located	in	the	following	location	on
Windows	XP	and	onwards	hosts:
c:\windows\system32\drivers\etc\hosts

	

The	process	of	DNS	resolution	is	illustrated	in	the	following	diagram;
	

	

1.	 First	the	local	DNS	resolver	checks	the	local	DNS	cache	for	a	matching
entry.
	

2.	 If	an	entry	isn’t	found	in	the	cache	the	resolver	will	send	a	request	to	a
remote	DNS	server.
	

3.	 When	the	remote	DNS	server	receives	the	request,	it	checks	to	see	if	it	is
responsible	for	the	domain	name.	In	most	cases	it	is	not,	and	the	server
generates	a	new	request	that	it	sends	on	to	the	root	DNS	server.	The	root
server	then	checks	its	records	for	the	top	level	domain	which	is	com	in	our
case.	The	root	server	will	send	a	reply	back	to	the	original	DNS	server	that
it	should	ask	the	top-level	domain	com	and	provides	the	information
required	to	contact	it.

	
4.	 Now	the	DNS	server	knows	the	address	of	the	top-level	domain	com	and

generates	a	new	request	to	the	com	domain	asking	if	it	knows	the	IP
address	of	google.	The	com	domain	looks	through	its	records	and	sends	a
reply	with	the	address	of	the	DNS	server	for	google.com.
	

5.	 The	DNS	server	now	knows	the	address	of	the	google.com	DNS	server	and
sends	a	new	request	to	it,	asking	for	the	address	of	www.google.com.	The
google.com	server	responds	with	an	address	and	the	original	DNS	server
then	forwards	this	to	the	client’s	local	DNS	resolver.	The	resolver	then
sends	this	information	to	the	web	browser.
	

6.	 The	DNS	record	will	also	be	stored	in	the	computers	local	DNS	cache	for	a
short	time	to	speed	up	the	process	next	time	the	computer	tries	to	access
www.google.com.
	

Session	Initiation	Protocol	(SIP)
SIP	is	a	protocol	used	for	voice	and	video	calls	over	IP.	The	protocol	specifies
the	messages	that	are	sent	between	the	two	end	point	devices	in	order	to
establish,	maintain	and	terminate	an	IP	based	voice	call.	It	is	also	used	in	video
conferencing,	streaming	media,	instant	messaging	and	online	gaming.

SIP	was	designed	by	Henning	Schulzrinne	and	Mark	Handley	in	1996.	In	1999
the	protocol	was	standardized	in	RFC	2543.	The	latest	version	of	the
specification	is	RFC	3261	and	was	published	in	June	2002.
As	with	any	Voice	over	IP	(VoIP)	technology,	the	need	for	dedicated	PSTN,
ISDN	or	multiplexed	serial	lines	is	removed;	calls	can	be	made	over	the	Internet
or	any	other	IP	based	network.	This	decreases	costs	significantly	particularly
when	used	across	existing	internal	or	internet	connections.

	
SIP	is	mainly	used	to	set	up	and	tear	down	a	session	and	typically	uses	TCP	and
UDP	ports	5060	and/or	5061.	If	secure,	encrypted	communications	are	required
Transport	Layer	Security	(TLS)	is	available,	this	uses	TCP	port	5061.

	

https://tools.ietf.org/html/rfc2543
https://tools.ietf.org/html/rfc3261

File	Transfer	Protocol	(FTP)
File	Transfer	Protocol	is	a	very	common	protocol	that	commonly	operates	using
both	TCP	ports	20	and	21.	FTP	is	different	to	file	sharing	services	that	you
access	on	your	PC	using	“My	Computer”	or	Windows	Explorer.	These	file
shares	are	locations	on	the	network	where	you	store	your	documents;	they	enable
you	to	work	with	them	as	if	they	were	stored	locally	on	your	computer.	FTP’s
main	purpose	is	to	copy	and	transfer	files	from	one	system	to	another.	Typically
both	systems	are	in	different	networks,	one	often	remote.

	
Like	HTTP,	it	is	very	important	that	the	receiving	computer	receives	the	correct
data	without	any	errors,	which	is	why	FTP	also	uses	the	TCP	protocol	to
communicate.	FTP	uses	interactive	CLI-based	text	commands	to	perform	its
various	functions	although	use	of	a	graphical	interface	(which	hides	this
complexity	from	the	user)	is	more	popular.

	
FTP	uses	two	ports	to	operate;	when	an	FTP	client	connects	to	the	server	it	uses
TCP	port	21	to	establish	the	connection.	This	connection	will	remain	open	until
the	session	is	closed	and	is	used	to	exchange	commands	(and	responses)	between
the	client	and	server.	When	the	computer	requests	or	sends	a	file	to	the	FTP
server,	a	separate	connection	is	opened	on	port	20	to	exchange	the	actual	file.
After	the	transfer	is	complete	this	connection	is	closed	immediately.	When	you
are	using	these	ports	you	are	most	likely	using	what	is	known	as	Active	FTP.	It
does	not	matter	which	connection	method	you	use,	FTP	will	always	use	one	port
for	commands	and	another	to	exchange	data.

	

The	Difference	between	Active	FTP	and	Passive	FTP
There	are	two	different	ways	for	a	client	to	connect	to	a	FTP	server	and	transfer
files;	Active	FTP	and	Passive	FTP.	When	setting	up	an	FTP	server	(or	load
balancing	FTP	traffic)	it	is	important	to	understand	the	difference	between	these
modes	and	determine	which	will	be	best	suited	for	your	environment.

	

Active	FTP
How	Active	FTP	works	is	explained	in	the	following	illustration:
	

	
1.	 In	our	example,	the	client	connects	to	the	FTP	server	using	source	port

2500	and	destination	port	21.
	

2.	 The	server	responds	to	the	request	using	source	port	21.
	

3.	 The	client	then	starts	to	listen	on	its	data	port	2501	(its	source	port	+1)
which	it	informed	the	server	of	in	its	initial	request.
	

4.	 Thereafter	the	FTP	server	connects	to	the	client	on	port	2501	from	its
source	data	port	of	20,	when	transferring	files.

	

One	reason	many	administrators	do	not	use	FTP	in	Active	mode	is	because	the
client	is	not	responsible	for	establishing	the	data	connection	(it	is	initiated	by	the
server).	The	client	simply	tells	the	FTP	server	what	port	it	is	listening	on	and
expects	that	the	server	will	open	the	connection	to	it.	Since	the	second
connection	is	a	new	outbound	session,	firewalls	(and	other	security	devices	or
software)	may	consider	the	connection	as	unwanted	or	hostile	and	block	it.
	

Passive	FTP
In	order	to	solve	the	challenges	when	using	Active	FTP	another	method	was
created	so	that	the	client	could	initiate	the	connection	to	the	server	for	both
control	and	data	traffic.	This	additional	method	is	called	Passive	mode	or	PASV.
PASV	is	actually	the	command	that	the	client	sends	to	the	FTP	server	to	indicate
that	it	wishes	to	use	Passive	Mode.
	

In	passive	mode	the	client	initiates	both	connections	to	the	server	which	solves
the	firewall	issue	often	encountered.	How	Passive	FTP	works	is	explained	in	the
following	illustration:
	

	

Let	us	use	port	2500	as	our	source	port	again;
	

1.	 The	client	initiates	a	connection	to	the	FTP	server’s	destination	command
port	21,	using	the	source	port	2500	but	instead	of	sending	the	server	a	data
port	to	be	used,	it	sends	the	PASV	command	instead.
	

2.	 This	will	trigger	the	FTP	server	to	specify	a	destination	port	number	(to	be
used	by	the	client)	and	send	this	information	back	to	the	client	in	response
to	the	PASV	command.	In	our	example	this	is	1500.
	

3.	 The	client	will	then	initiate	a	second	connection	to	the	server	using
destination	port	1500	and	source	port	2501;	this	connection	will	be	used	to
transfer	data	between	the	two	hosts.

	
4.	 The	server	responds	back	to	the	client’s	request	as	required.

	

Even	though	passive	mode	solves	many	potential	firewall	problems	it	can	result
in	issues	on	the	server	side.	Since	the	FTP	server	is	the	one	generating	random
ports	you	need	to	open	up	access	on	these	ports	on	the	server	and	firewall	which
leads	to	security	problems.	Fortunately	most	FTP	server	applications	allow	you
to	reduce	the	number	of	destination	ports	the	server	can	generate	and	most
firewalls	can	also	monitor	the	control	connection	to	dynamically	permit	the
related	data	transfer	connection.
	

Not	all	FTP	applications	support	passive	mode.
	

Simple	Mail	Transfer	Protocol	(SMTP)
There	are	three	major	protocols	used	for	email	transactions;	these	are	Post	Office
Protocol	(POP)	v3,	Internet	Message	Access	Protocol	(IMAP)	and	SMTP	(easily
confused	with	SNMP).	The	major	difference	between	the	three	is	that	POP	and
IMAP	are	used	to	download	or	read	email	from	an	email	server	whereas	SMTP
is	used	to	transfer	(send)	emails	from	both	client	to	server	and	server	to	server.

SMTP	was	first	defined	in	RFC	821	by	Jonathan	B.	Postel	in	august	1982	but
was	updated	in	2008.	The	2008	edition	added	information	regarding	Extended
SMTP	which	is	also	known	as	Enhanced	SMTP.	Extended	SMTP	is	a	definition
of	protocol	extensions	to	the	SMTP	standard	and	the	main	identification	method
is	that	when	clients	open	a	tranmission	they	start	with	EHLO	(Extended
HELLO)	instead	of	the	regular	HELO.	You	will	read	more	about	this	later	on	in
this	chapter.	Extended	SMTP	is	documented	in	the	RFC	5321.
Just	like	HTTP	and	FTP,	SMTP	is	based	on	text	commands	that	are	sent
between	the	two	end-points	and	TCP	is	used	for	reliable	transmission	of	the	data.
The	default	(or	standard)	TCP	port	used	is	25	and	communication	is	initiated	by
the	sending	system	(which	is	called	the	sender-SMTP).	Once	the	TCP	session
has	been	initiated,	the	sender-SMTP	starts	transmitting	SMTP	commands	to	the
receiver-SMTP	(the	server).	The	receiver-SMTP	responds	with	reply	messages
and	three-digit	numerical	codes	for	each	command	that	it	receives.	The	most
common	code	that	you’ll	likely	see	is	250	which	indicate	the	sender-SMTP
command	was	successful.	The	groups	of	three-digit	response	codes	are	defined
and	divided	as	follows;

	
Three-digit	Response	Codes

Three-digit	code Description
1xx Success	but	requires	confirmation
2xx Complete	success
3xx Success	so	far.	More	input	is

expected
4xx Temporary	failures
5xx Permanent	failures
	

https://tools.ietf.org/html/rfc821
https://tools.ietf.org/html/rfc5321

There	are	two	commands	that	are	used	to	initiate	the	connection,	EHLO	or
HELO.	EHLO	is	used	when	the	client	supports	at	least	one	of	several	possible
extensions	that	are	not	part	of	the	basic	SMTP	specification	and	HELO	is	used
when	it	does	not.	Most	of	these	extensions	are	supported	by	the	majority	of
clients	and	servers	these	days	and	when	the	client	has	issued	the	EHLO
command	the	server	will	reply	with	all	of	the	extensions	that	it	currently
supports.
	

How	SMTP	works	is	explained	in	the	following	illustration:
	

	
1.	 The	sender-SMTP	starts	the	communication	by	sending	the	command

EHLO	with	its	own	hostname.

EHLO	toronto.com
	

2.	 The	receiver-SMTP	will	log	the	senders	IP	address	and	respond	back	with

the	code	250,	its	own	hostname	and	usually	a	greeting	message.
250	chicago.com	Hello

	
Now	the	receiver-SMTP	has	identified	the	sender-SMTP	and	they	are	ready	to
continue.

	
3.	 The	sender-SMTP	will	now	send	the	individual	sender’s	email	address.

This	is	the	information	that	is	located	in	the	“From:”	part	of	the	email
address.	It	could	also	be	a	mailing	list	or	a	redirector.

MAIL	FROM: 	tom.andersson@toronto.com
	

4.	 The	receiver-SMTP	replies	back	that	the	command	was	successful
	
250	OK

	

It	is	very	important	that	the	email	address	is	in	the	correct	format	and	that	the
domain	is	valid.	Otherwise	the	SMTP	server	will	reject	the	email.
	

5.	 After	that,	the	sender-SMTP	will	send	the	addresses	of	the	receiving	mail
addresses.	This	could	be	a	single	recipient	or	multiple.
RCPT	TO:	peter.williams@chicago.com

	

Note	The	RCPT	TO:	command	can	only	be	used	for	a	single
address	but	it	may	be	used	multiple	times	where	there	are	multiple	
recipients.

	
6.	 The	receiver-SMTP	replies	back	that	the	command	was	successful

250	OK
	

7.	 Once	all	addresses	have	been	added	we	can	now	go	ahead	and	send	the

email.	The	email	will	include	a	header,	a	blank	line,	the	message	body	and
finally	attachments,	if	there	are	any.	The	sender-SMTP	will	initiate	the
process	using	the	command	DATA.
DATA

	
8.	 The	receiver-SMTP	will	simply	respond	back	with	the	status	code	354	and

tell	the	sender-SMTP	to	indicate	the	end	of	the	data	input	using	a	single
dot.	As	you	remember	from	the	table	previously,	the	status	code	3xx	means
success	so	far.	More	input	is	expected.	We	now	wait	until	the	sender-
SMTP	has	sent	all	the	data.

354	End	data	with	<CR><LF>.<CR><LF>
	

9.	 The	sender-SMTP	will	now	send	all	the	data	which	is	the	header,	message
body	and	attachments.
	
[EMAIL	MESSAGE]

	
	
10.																						The	sender-SMTP	ends	the	data	transfer	by	sending	the	dot.
	
.(dot)

	

	
11.																						The	sender-SMTP	will	receive	a	250	message	stating	that	the
message	was	accepted	for	delivery.
250	2.0.0	Message	accepted	for	delivery

	
12.																						If	the	sender-SMTP	does	not	have	any	more	messages	to	send
it	will	close	the	connection	using	the	QUIT	command.

QUIT
	

Chapter	Summary
	

Domain	Name	System	(DNS)	is	one	of	the	keystones	of	making
communication	work.	It	operates	at	port	53	and	it	is	responsible	for
resolving	IP	addresses	into	domain	names.
	
File	Transfer	Protocol	(FTP)	is	responsible	for	copying	and	transferring	a
file	from	one	system	to	another	and	it	operates	on	both	port	21	and	20.	It
can	work	in	both	active	and	passive	mode.
	
HTTP	or	Hyper	Text	Transfer	Protocol	is	the	network	protocol	that
delivers	resources	on	web	pages	on	the	World	Wide	Web	and	it	operates
on	port	80.	The	commands	used	are	GET,	POST	and	HEAD.
	
SIP	or	Session	Initiation	Protocol	is	a	protocol	used	for	voice	and	video
calls	over	IP.	The	protocol	controls	the	messages	that	are	sent	between	the
two	devices	such	as	the	establishment	of	the	session.

Chapter	Review
In	order	to	test	your	knowledge	and	understanding	of	this	chapter,	please	answer
the	following	questions.	You	will	find	the	answers	and	explanations	of	the
questions	at	the	end	of	this	chapter.

	
1.	 What	port	does	DNS	operate	on?

	
a.	 80

	
b.	 53

	
c.	 3389

	
d.	 25

	
	

2.	 If	you	want	to	create	a	host	record	for	a	server	you	recently	installed.	What
type	of	DNS	record	should	you	create?
	
a.	 SOA	Record

	
b.	 PTR	Record

	
c.	 CNAME	Record

	
d.	 A	Record

	
	

3.	 In	FTP	active	mode,	which	entity	will	establish	the	data	connection?
	
a.	 The	client

	
b.	 The	server

	
c.	 Both

	

	
4.	 What	is	the	main	advantage	of	using	passive	mode	FTP?

	
a.	 The	connection	will	not	be	blocked	by	the	client’s	firewall

	
b.	 The	transfer	speed	is	faster	on	passive	mode

	
c.	 The	connection	will	not	be	blocked	by	the	server’s	firewall

	
d.	 Passive	mode	increases	security

	
	

5.	 What	does	the	HTTP	status	code:	404	Not	Found	mean?
	
a.	 The	web	browser	could	not	resolve	the	DNS	name.

	
b.	 The	requested	resource	does	not	exist.

	
c.	 The	server	is	offline	and	does	not	respond	to	the	request.

	
d.	 The	resource	has	been	permanently	moved.

	
	

6.	 What	is	the	purpose	of	the	Connection:	keep-alive	header	in	HTTP	v.1.0?
	
a.	 Connection:	keep-alive	is	used	to	keep	the	TCP	session	active

	
b.	 Connection:	keep-alive	is	used	when	new	connections	are	open

	
c.	 Connection:	keep-alive	is	used	to	prevent	a	connection	from	timing

out.
	
d.	 Connection:	keep-alive	is	used	when	you	want	the	server	to	send	all

of	the	resources	in	one	single	segment.
	
	

7.	 What	error	code	category	indicates	an	error	on	the	server’s	part?

	
a.	 2xx

	
b.	 4xx

	
c.	 5xx

	
d.	 1xx

	
	

8.	 You	are	trying	to	access	a	website	on	the	Internet	using	your	web	browser
and	you	receive	an	HTTP	code	of	the	category	4xx.	Where	does	the
problem	reside?
	
a.	 In	the	Web	server

	
b.	 In	the	Internet	Service	Provider	(ISP)

	
c.	 On	the	client	computer

	
d.	 In	the	DNS	server

	
	

9.	 What	is	the	main	difference	between	SMTP,	POP3	and	IMAP?
	
a.	 POP3	and	IMAP	use	the	UDP	protocol;	SMTP	uses	the	TCP	protocol

	
b.	 SMTP	is	used	to	transfer	email	between	end-points;	POP3	and	IMAP

are	used	to	download/access	email.
	
c.	 SMTP	is	only	supported	on	Microsoft	environments.

	
d.	 SMTP	has	higher	reliability	than	POP3	and	IMAP

	

Chapter	Review:	Answers
You	will	find	the	answers	to	the	chapter	review	questions	below:

	
1.	 The	correct	answer	is:	B

	
a.	 80

	
b.	 53

	
c.	 3389

	
d.	 25

	

DNS	operates	on	port	53.	Port	80	is	used	for	HTTP.	Port	3389	is	used	for	RDP.
Port	25	is	used	for	SMTP.

	
2.	 The	correct	answer	is:	D

	
a.	 SOA	Record

	
b.	 PTR	Record

	
c.	 CNAME	Record

	
d.	 A	Record

	

The	correct	answer	is	to	create	an	A	record.	An	A	record	will	provide	a	name-to-
address	record	that	will	convert	a	DNS	name	to	an	IP-address.
	
SOA	records	are	used	to	indicate	the	best	DNS	server	in	a	DNS	zone.
	
A	PTR	record	is	only	used	for	reverse	lookups.
	

A	CNAME	record	is	used	to	create	an	alias	for	a	host	record.
	

3.	 The	correct	answer	is:	B
	
a.	 The	client

	
b.	 The	server

	
c.	 Both

	

When	using	FTP	in	active	mode,	the	server	will	initiate	the	data	connection	and
this	may	cause	some	problems.	Since	the	data	connection	is	a	new	connection
and	it	is	the	server	which	initiates	it,	it	is	very	likely	that	the	client’s	firewall	will
block	the	request.

	
4.	 The	correct	answer	is:	A

	
a.	 The	connection	will	not	be	blocked	by	the	client’s	firewall

	
b.	 The	transfer	speed	is	faster	in	passive	mode

	
c.	 The	connection	will	not	be	blocked	by	the	server’s	firewall

	
d.	 Passive	mode	increases	security

	
In	passive	mode,	both	connections	are	initiated	by	the	client	so	the	connection
towards	the	FTP	server	will	most	likely	not	be	blocked	by	the	client’s	firewall.

	
	

5.	 The	correct	answer	is:	B
	
a.	 The	web	browser	could	not	resolve	the	DNS	name.

	
b.	 The	requested	resource	does	not	exist.

	

c.	 The	server	is	offline	and	does	not	respond	to	the	request.
	
d.	 The	resource	has	been	moved	permanently

	
All	4xx	codes	mean	that	there	is	an	error	on	the	client’s	side.	A	404	Not	Found
means	that	the	resource	that	the	client	has	requested	does	not	exist	so	it	is	a	user
input	error.

	
6.	 The	correct	answer	is:	A

	
a.	 Connection:	keep-alive	is	used	to	keep	the	TCP	session	active.

	
b.	 Connection:	keep-alive	is	used	when	new	connections	are	open.

	
c.	 Connection:	keep-alive	is	used	to	prevent	a	connection	from	timing

out.
	
d.	 Connection:	keep-alive	is	used	when	you	want	the	server	to	send	all

of	the	resources	in	one	single	segment.
	

HTTP	will	always	close	the	TCP	connection	once	the	client	has	received	the
requested	resource.	If	the	client	applies	the	Connection:	keep-alive	header	with
every	GET	request,	the	HTTP	server	will	keep	the	connection	alive.	This	means
that	the	TCP	Three-way-handshake	does	not	have	to	be	made	again	and	this
saves	CPU,	memory	and	bandwidth.

	
7.	 The	correct	answer	is:	C

	
a.	 2xx

	
b.	 4xx

	
c.	 5xx

	
d.	 1xx

	

5xx	indicates	an	error	on	the	server's	part.
	
2xx	indicates	success	of	some	kind
	
4xx	indicates	an	error	on	the	client's	part
	
1xx	indicates	an	informational	message	only
	

	
8.	 The	correct	answer	is:	C

	
a.	 The	Web	server

	
b.	 The	Internet	Service	Provider	(ISP)

	
c.	 On	the	client	computer

	
d.	 The	DNS	server

	
4xx	indicates	an	error	on	the	client's	part
	
9.	 The	correct	answer	is:	B

	
a.	 POP3	and	IMAP	use	the	UDP	protocol;	SMTP	uses	the	TCP	protocol

	
b.	 SMTP	is	used	to	transfer	email	between	end-points;	POP3	and

IMAP	are	used	to	download/access	email.
	
c.	 SMTP	is	only	supported	on	Microsoft	environments.

	
d.	 SMTP	has	higher	reliability	than	POP3	and	IMAP

9.	F5	Solutions	&	Technology
	
All	available	BIG-IP	Modules	and	Features	(or	add-ons)	simply	expose	and
enable	functionality	that	is	already	present	in	TMOS.	Some	of	this	functionality
is	provided	by	(or	within)	TMM	and	is	consequently	very	high	performance	and
some	is	not	(the	HMS	is	used	instead)	with	the	obvious	result	that	performance
and	the	throughput	that	can	be	maintained	are	lower.
	
The	number	of	Modules	(not	Features)	you	can	run	on	a	hardware	appliance	is
dependent	on	its	specification	and	the	TMOS	version	installed.
	
For	full	details	of	what	Modules	combinations	are	supported	when	running	a
TMOS	version	from	10	through	to	11.3	see	this	matrix	from	F5:
https://support.f5.com/content/dam/f5/kb/global/solutions/sol10288_images.html/big-
ip-product-matrix-v35.pdf.
	
As	a	general	rule	of	thumb	only	two	Modules	can	be	used	on	VE	and	lower	end
platforms,	three	or	four	can	be	used	with	middle	and	top	end	platforms.	From
v11.4	the	number	of	supported	modules	(for	both	hardware	and	VE	platforms)	is
mostly	only	limited	by	memory,	as	follows;
	

12Gb	or	more:	any	combination	of	modules
	
8Gb:	up	to	three	modules	(or	two	if	one	is	AAM)	(GTM	and	LC	do	not
count	toward	the	limit)
	
<8Gb,	>4Gb:	up	to	three	modules	(or	standalone	if	AAM	is	used)	(GTM
and	LC	do	not	count	toward	the	limit)
	
4Gb	or	less:	up	to	two	modules	(or	standalone	if	AAM	is	used,	must	be
provisioned	as	Dedicated)

	
A	combination	of	PEM	and	CGNAT	is	only	supported	on	certain	platforms.

https://support.f5.com/content/dam/f5/kb/global/solutions/sol10288_images.html/big-ip-product-matrix-v35.pdf

	
Note	that	the	following	list	of	modules	is	unlikely	to	be	definitive	for	long;	F5
update,	replace	and	merge	Modules	frequently	as	in	the	recent	case	where	WAM
and	WOM	are	now	no	longer	available	separately	and	have	been	packaged
together	as	the	AAM	Module.	For	the	most	up	to	date	and	detailed	(yet	biased)
information	on	all	available	Modules,	go	here:	https://www.f5.com/products/big-
ip/.
	

https://www.f5.com/products/big-ip/

Access	Policy	Manager	(APM)
APM	offers	a	unified,	centralised	access	security	solution	for	applications	and
networks,	at	typical	TMM	scale	and	performance;	up	to	1600	logins	per	second
and	100,000	concurrent	users.	The	module	provides	an	increasing	number	of
features	and	benefits;
	

Dynamic,	policy-based,	context-aware	access	control
	
Central	control	for	diverse	users	and	locations	(remote,	mobile,	LAN	and
WLAN)
	
Centralised,	repeatable	and	consistent	policy	application
	
Support	for	the	CRLDP	and	OCSP	dynamic	certificate	revocation
protocols
	
SSL	VPN
	
Authentication	offload	with	support	for	RADIUS,	LDAP,	MS	AD
Kerberos,	HTTP,	RSA	SecurID,	OAM	and	TACACS+	authentication
methods
	
Single	Sign	On	(SSO)	features
	
Java	applet	rewriting
	
SAML	support	(from	v11.3)
	
Multi-vendor	VDI	support	including	VMware	View,	Citrix	XenApp	&
XenDesktop,	Microsoft	RDP	and	Java	RDP	clients
	
Enterprise	Manager	management
	
High	speed	logging	(HSL)
	

Access	Policy	Manager	is	available	as	an	LTM	or	ASM	add-on	module	for

physical	and	Virtual	Editions	and	VIPRION	chassis	platforms.	It	is	also
available	as	part	of	the	BIG-IP	Edge	Gateway	remote	access	product.
	
APM	(in	particular	as	part	of	the	Edge	Gateway	product)	is	the	successor	to	the
FirePass	product.	APM	and	LTM	or	ASM	are	now	the	successor	to	the	Edge
Gateway	product	itself.	APM	also	supersedes	and	vastly	improves	upon	the
‘legacy’	Advanced	Client	Authentication	(ACA)	Module	although	it	is	still
available.
	

Application	Security	Manager	(ASM)
ASM	(based	on	technology	gained	through	the	2004	acquisition	of	MagniFire
Websystems)	provides	advanced	web	application	aware	‘firewall’	(WAF)
functionality.	Unlike	most	modules	it	does	not	run	within	TMM	but	the	HMS
instead	and	therefore	doesn’t	benefit	directly	from	typical	TMM	performance
and	scale.	It	provides	protection	against	a	wide	range	of	attacks	and	attack
vectors	including;
	

Web	scraping	(the	automatic	(mass)	extraction	of	data	from	a	website	or
sites)
	
SQL	Injection	(execution	of	SQL	code,	‘injected’	via	a	website	or
service’s	user	input	methods	(such	as	a	form	field),	on	the	database
backend	used	by	that	site’s	web	servers)

	
Layer	seven	(aka	Application	Layer)	DoS	and	DDoS	((distributed)
denial	of	service	attacks	aimed	at	application	functions)

	
Cross-site	scripting	(aka	XSS)	(malicious	browser	code	injection	and
trusted	site	permission	hijacking)

	
JSON	payload	attacks

	
FTP	Application	attacks

	
SMTP	Application	attacks

	
XML	Application	attacks

	
Other	features	include;
	

Vulnerability	assessment	and	mitigation
	
Integration	with	vulnerability	scanners	from	Cenzic	Hailstorm,	IBM
Rational	AppScan,	QualysGuard	Web	Application	Scanning	and	WhiteHat
Sentinel

	
Session	awareness
	
White	and	black	listing
	
Regulatory	compliance	reporting	(PCI	for	example)
	
An	automatic	policy-building	engine
	
Enterprise	Manager	management
	

Application	Security	Manager	is	available	on	a	selection	of	BIG-IP	application
switches,	as	a	Virtual	Edition	and	as	an	LTM	add-on	module	for	physical	and
virtual	editions	and	VIPRION	chassis	platforms.
	

Local	Traffic	Manager	(LTM)
LTM	is	a	TMOS	system	module	that	was	named	as	such	with	the	first	release	of
TMOS,	v9,	in	2004.	LTM	Is	the	latest	iteration	of	the	original	F5	Networks
product,	in	the	sense	that	it	performs	load	balancing;	it’s	clearly	evolved	a	great
deal	from	there	and	is	now	very	different	from	the	BIG-IP	Controller	products
first	released	by	the	company.

	
So,	what	is	LTM?	In	its	purest	form	it’s	a	load	balancer;	only	a	very
sophisticated	one	with	a	significant	amount	of	additional	features	designed	to
improve	network,	server	and	application	performance,	security,	flexibility,
control,	visibility	and	management.	You	could	think	of	it	as	a	layer	7	router,
making	routing	decisions	based	on	contextual	application	data	as	well	as
network	conditions,	business	logic	and	rules,	security	policy,	client	host
awareness	and	more.	Features	such	as	iCall,	iControl,	BIG-IQ	and	others	extend
this	yet	further	into	the	operations,	orchestration	and	SDN	domains.
	
Local	Traffic	Manager	is	available	on	all	BIG-IP	application	switches	and	as	a
Virtual	Edition.
	

Global	Traffic	Manager	(GTM)
Global	Traffic	Manager	is	a	TMOS	Module	and	is	part	of	the	core,	long	standing
F5	product	set.	GTM	primarily	provides	DNS	based	'global'	server	load
balancing	(GSLB)	for	IPv4	and	IPv6	(inter-Data	Centre)	rather	than	LTM’s
intended	intra-Data	Centre	operation.	In	order	to	make	this	Module	a	more
attractive	proposition,	its	feature	set	has	been	significantly	expanded	since	2012
it	now	runs	in	TMM	natively,	rather	than	within	the	HMS.	The	considerable	list
of	features	and	benefits	include;
	

Global	server	load	balancing	(using	DNS	to	direct	traffic	between
multiple	DCs)
	
Dynamic	ratio	load	balancing	(load	balancing	based	on	weights	derived
from	Node	metrics	such	as	CPU	and	memory	usage)

	
Wide	area	persistence	(DNS	response	persistence,	a	same	client	will	get
the	same	response	and	load	balancing	will	be	ignored	unless/until	a
timeout	is	reached)

	
Geographic	load	balancing	(load	balancing	a	client	to	its	geographically
closest	DC)

	
Advanced	health	monitoring

	
QoS	Awareness

	
DNS	Security	Extensions	(DNSSEC)	support	(including	rate	limiting
and	centralised	key	management)

	
Up	to	10	million	DNS	responses	per	second	using	the	VIPRION
platform

	
DNS	Caching

	
DNS	Server	consolidation	and	offload

	

DNS	DDoS	and	Local	DNS	(LDNS)	cache	poisoning	protection
	

DNS	server	load	balancing	(similar	to	LTM	server	load	balancing)
	

Not	BIND	based	and	therefore	not	subject	to	BIND	security
vulnerabilities

	
Protocol	inspection	and	validation

	
DNS	record	type	ACLs

	
IP	Anycast	support

	
IPv6	support

	

GTM	is	available	as	a	standalone	appliance,	a	virtual	edition	and	an	LTM	add-on
module	for	physical	and	Virtual	Editions	and	on	VIPRION	chassis	platforms.
DNS	Services	are	also	available	as	an	LTM	add-on	Feature	Set.
	

Enterprise	Manager	(EM)
I	have	to	admit	that	large	scale	management	and	monitoring	bore	me	rigid;	I
blame	this	on	the	incumbent	vendors	happy	to	milk	the	cash	cow	rather	than
innovate	and	please	their	customers.	I’ve	actually	used	Enterprise	Manager
(v2.x)	and	whilst	I’m	unlikely	to	describe	it	as	exciting	it’s	certainly	an
improvement	over	other	so-called	solutions	I’ve	seen	and	it	is	very	focused.
Enterprise	Manager	has	numerous	features	and	benefits;
	

Aids	with	scaling	up
	
Improves	device,	application	and	service	visibility	and	therefore
troubleshooting	capabilities	and	capacity	planning	and	forecasting
accuracy,	as	with	other	centralised	management	solutions
	
Reduces	cost	and	complexity
	
Automates	common	tasks	including	device	configuration	backups,	ASM
policy	deployments	and	reporting
	
Custom	Alerts	and	thresholds
	
Manages	and	eases;

	
Device	inventory	tasks
	
Service	contract	monitoring

	
SSL	TPS	monitoring	and	certificate	management
	

Centralised	configuration	management	including	comprehensive	search
	
Allows	for	the	use	of	configuration	templates
	
Granular	(distributed)	configuration	management
	
Uses	a	local	or	remote	MySQL	database	allowing	enterprise	integration

and	high	compatibility	with	various	DB	management	and	reporting	tools
	
Physical	and	virtual	edition	support	for	LTM,	GTM,	ASM,	LC,	WA,
WOM	(and	therefore	presumably	AAM),	APM	and	Edge	Gateway

	

EM	is	available	as	a	standalone	appliance	and	a	virtual	edition.	It	supports	and
can	manage	all	hardware	appliances	including	VIPRION	and	Virtual	Editions.
	

Note	EM	is	very	likely	to	be	phased	out	and	replaced	by	the	BIG-
IQ	Device	product.

	

WebAccelerator	(WAM)
WAM	provides	a	host	of	features	designed	to	optimise	and	increase	HTTP-based
website	performance	and	responsiveness	with	the	primary	aim	of	improving	the
user	experience	and	consequently	meeting	business	goals	such	as	improved
productivity,	higher	sales	and/or	revenue,	higher	customer	satisfaction,	reduced
bandwidth	costs	and	so	on.	A	number	of	features	are	aimed	specifically	at
mobile	device	users,	reflecting	the	increase	in	the	use	of	these	devices	to	access
the	internet	and	internal	enterprise	web	based	services.
	
This	Module	is	dependent	on	and	can	only	be	used	in	conjunction	with	LTM.
	
WebAccelerator	was	(and	is	until	1st	October	2014)	available	as	a	standalone
appliance,	a	Virtual	Edition	and	an	LTM	add-on	module	for	physical	and	Virtual
Editions	and	VIPRION	chassis	platforms.	It	is	also	available	as	part	of	the	BIG-
IP	Edge	Gateway	remote	access	product.
	

WAN	Optimization	Manager	(WOM)
WOM	symmetrically	optimises	network	and	application	protocols	and	secures
and	accelerates	traffic	between	two	(or	more)	sites	connected	by	a	bandwidth
constrained	(because	of	cost	or	technology)	communication	circuit	or	circuits.
This	is	achieved	(as	with	competing	products)	with	the	WOM	acting	as	a
transparent	proxy;	functionality	that	TMOS	was	built	for	and	provides	at	speed.
	
As	most	applications	and	protocols	were	not	designed	with	performance	in	mind,
the	benefits	can	be	significant	where	both	time/speed	and	cost	are	concerned.
	
WAN	Optimization	Manager	was	(and	is	until	1st	October	2014)	available	as	a
standalone	appliance,	a	Virtual	Edition	and	an	LTM	add-on	module	for	physical
and	Virtual	Editions	and	VIPRION	chassis	platforms.	It	is	also	available	as	part
of	the	BIG-IP	Edge	Gateway	remote	access	product.
	

Edge	Gateway
Edge	Gateway	was	available	as	a	virtual	edition	and	on	a	selection	of	BIG-IP
application	switches	but	not	on	VIPRION	chassis	platforms.	It	is	a	combination
of	the	APM,	WA	and	WOM	modules,	providing	secure	remote	access	(RAS)
gateway	features	such	as;
	

ICSA	Certified	SSL	VPN
	
Clientless	access
	
End	point	validation	and	security	and	access	policy	enforcement
	
Single	Sign	On	(SSO)	and	credential	caching
	
Multi-factor	authentication
	
Symmetric	acceleration	(if	the	client	is	using	the	Edge	Client	software)
	
Wide	AAA	protocol	support
	
Wide	remote	access	protocol	support	(Citrix,	RDP,	ActiveSync	etc.)
	
IPv6	Support
	
Enterprise	Manager	Management
	

ARX
Based	on	the	acquisition	of	Acopia	in	2007	and	released	under	the	F5	brand	but
continuing	to	use	the	original	name,	ARX	is	the	data	equivalent	of	a	network
load	balancer,	featuring	file	system	virtualisation,	load	balancing	and	logical
abstraction	of	the	physical	storage	environment	(referred	to	as	the	Global
Namespace).
	
In	the	same	way	that	BIG-IP	platforms	run	TMOS,	the	ARX	platform	runs	the
Data	Management	Operating	System	(DMOS).
	
Features	of	ARX	and	DMOS	include;
	

Compatibility	with	the	vast	majority	of	Network	Attached	Storage	(NAS)
devices	and	file	servers
	
Capability	for	handling	more	than	two	billion	files
	
High	performance	and	throughput
	
No	proprietary	stub	files	on	file	storage	assets
	
Redundant	hardware	and	network	components	and	HA	clustering
	
10Gb	interface	support
	
CLI	and	GUI	management
	
SNMP,	extensive	logging	and	reporting,	port	mirroring	and	packet	capture
	
Data	replication	and	automated	tiering
	
NFS	(v2	and	v3)	and	CIFS	protocol	support
	
A	patented	split-path	architecture	separates	the	data	and	control	paths	in
the	system

	
An	open	API

	
Benefits	include;
	

Physical	storage	changes	are	hidden	from	clients
	
A	single	point	of	control	(as	with	BIG-IP	and	TMOS)
	
Reduced	storage	expenses	with	automated	tiering	policies	and	easy
integration	of	new,	cheaper	storage	(fewer	costs,	lower	overhead,	no
disruption)
	
Optimise	existing	storage	by	consolidating	all	storage	into	a	single	unified
storage	pool
	
Easy,	non-disruptive	migration	of	data	between	devices,	storage	capacity
and	device	moves,	adds	and	changes.
	
As	with	the	ADC	benefits	detailed	earlier,	ARX	abstracts	the	physical
storage	complexities	as	it	works	like	a	proxy	for	client	connections
	
Multi-vendor,	multi-platform	support
	
Dynamic	capacity	balancing
	
Reduced	backups	and	backup	time
	

Note	ARX	Becomes	end	of	sale	on	the	1st	of	November	2014.

	

iRules
iRules	are	available	with	LTM	and	other	TMOS	system	modules	including	GTM
and	ASM.	They	are	user	created	Tool	Command	Language	(Tcl)	programs	or
scripts	that	are	assigned	to	Virtual	Servers	and	run	(or	triggered)	by	one	or	more
user	specified	Events	related	to	that	Virtual	Server,	such	as	a	new	TCP
connection	or	HTTP	GET	request.
	
These	Tcl	scripts	(a	programmer	might	even	call	them	‘event	handlers’)	can
contain	any	number	of	Commands	that	can	be	used	to	make	load	balancing
decisions,	modify	packet	content,	direct	traffic	flow,	collect	statistics	and	do	just
about	anything	else	you	can	think	of	between	layers	two	through	seven	and
beyond.	This	makes	your	network,	traffic,	routing	and	application	flow
programmable	and	contextual	(at	the	point	LTM	handles	it	at	least).	This	gives
you	a	great	deal	of	power	and	control.
	
Tcl	itself	is	a	relatively	simple	programming	language	to	write,	read	and
understand	whilst	still	being	very	powerful	and	flexible.	Variables,	Functions,
Operators,	external	files	(iFiles),	encryption,	external	UDP	and	TCP	connections
(Sideband	Connections),	Geolocation	and	security	functions	are	all	supported.
To	give	you	an	idea	of	what	an	iRule	looks	like,	here’s	an	example	that	simply
redirects	an	insecure	HTTP	request	to	HTTPS	by	returning	a	HTTP	status	code
of	302	(a	redirect)	and	the	desired	secure	HTTPS	URL;
	

when	HTTP_REQUEST	{
HTTP::redirect	https://[HTTP::host][HTTP::uri]
}

	
iRules	are	pre-compiled	into	byte	code	to	provide	fast	performance,	so	don’t
think	using	them	will	impact	your	device	(unless	you	use	a	really	poorly	written
iRule!).	iRules	are	challenging	for	most	but	stick	with	them	and	you’ll	soon
learn	to	love	them.	They	are	great	for	handling	unique	customer	conditions	and
customisations,	controlling	and	routing	traffic	contextually,	implementing
business	policy,	using	client	specific	decision	making	and	much,	much	more.
The	possibilities	are	endless	and	the	only	limit	is	your	imagination	(although
there	is	always	room	for	improvement).

	

iApps
iApps	is	the	name	for	a	collection	of	features	available	from	TMOS	v11
onwards;	a	so-called	‘framework’	for	deploying	and	managing	application
delivery	services	and	their	related	BIG-IP	configuration.	This	is	done	using
custom	templates	and	question-driven	GUI	based	forms	to	automate	complex
tasks	and/or	processes.	The	templates	(which	control	the	possible	configurations)
are	created	using	the	tmsh	scripting	language.	The	related	forms	are	created
using	a	simple	scripting	language	called	Application	Presentation	Language
(APL)	and	the	overall	iApp	output	(once	a	user	completes	the	relevant	forms)	is
the	necessary	configuration	and	objects.	This	‘package’	can	then	be	managed
and	administered	(or	even	removed)	as	a	whole	to	reduce	administration
overhead.

	
iApps	can	be	used	across	a	number	of	modules	including	APM,	LTM	and
WAM.

	
As	with	any	template	derived	automated	configuration	and	process,	particularly
with	complex	configurations,	iApps	can	help	to	reduce	configuration	time	and
errors	and	increase	accuracy.	iApps	can	also	be	used	in	tandem	with	other
features	such	as	User	Roles	and	iRules	to	provide	fine	grained	configuration
control	across	administrative	groups.	Equally,	iApps	can	be	very	complex.

	

iControl
iControl	is	an	open	SOAP	(XML)	web	services	and	REST	enabled	API	(and
related	SDK)	that	provides	control	of	the	configuration	of	an	F5	BIG-IP	as	well
as	access	to	configuration	object	status	and	statistics.	These	interfaces	are
accessed	using	Web	Services	Description	Language	(WSDL)	version	1.1	for
SOAP	and	HTTP	for	REST.
	
The	iControl	API	is	only	accessible	using	SSL/TLS	via	a	device’s	dedicated
management	interface	and	uses	HTTP	basic	authentication	(via	WWW-
Authentication	HTTP	headers)	using	the	same	authentication	method(s)
configured	for	accessing	the	device’s	GUI	or	CLI	via	SSH.
	
Interestingly,	the	iControl	SOAP	API	cannot	be	specifically	disabled	as	it	is	a
server-side	module	of	the	administrative	web	server	(which	serves	the
management	GUI).	Additionally	as	iControl	is	single	threaded,	performance,	by
today’s	standards,	may	be	poor.
	
The	benefits	of	iControl	include;
	

Standards	based	integration	into	existing	extensible	management,
monitoring,	workflow	and	application	systems
	
Automated	provisioning	and	de-provisioning	of	servers	and	applications
	
Automation	and	configuration	management	and	efficiency
	
Service	Orientated	Architecture	(SOA)	integration
	
Software	Defined	Networking	(SDN)	integration

	
Some	examples	of	products	where	iControl	is	used	include;	VMware	vCenter
integration,	Microsoft	System	Center	Virtual	Machine	Manager	(SCVMM)	with
the	F5	Management	Pack,	the	F5	iRules	Editor	and	F5	Enterprise	Manager.
	

iHealth
iHealth	is	a	free	online	tool	available	here:	https://ihealth.f5.com/	that	can	be
used	to	check	the	health,	security	and	configuration	of	a	device	and	ensure	it	is
running	efficiently.

	
The	service	revolves	around	Qkview	files	(uploaded	by	the	user)	which	can	be
easily	generated	on	any	F5	BIG-IP	device	using	the qkview command.	This	file
contains	the	device	configuration	files,	logs	and	other	diagnostic	command
outputs.

	
The	iHealth	system	parses	and	analyses	the	contents	of	the	Qkview	file	and
displays	any	information	on	identified	configuration	issues,	known	issues,
common	mistakes,	software	version	bugs	and	best	practice	guidance,	in	a
friendly,	graphical	format.	Recommended	remediation	information	is	also
provided	along	with	links	to	relevant	AskF5	articles.

	
The	system	benefits	both	F5	and	the	user;	F5	get	fewer	support	calls	and	users
avoid	the	need	for	F5	support	involvement	in	basic	or	commonly	occurring	issue
scenarios.	iHealth	is	updated	on	a	regular	basic	to	take	account	of	new	bugs	and
issues	and	TMOS	versions.

	

https://ihealth.f5.com/

iQuery
iQuery	is	an	F5	Networks	proprietary,	TCP-based	(port	4353)	XML-like
protocol	that	exchanges	configuration,	statistical,	probe	and	metric	information
between	BIG-IP	platforms.
	
Communication	is	bi-directional,	SSL	secured	(after	initial	device	discovery
when	certificates	are	exchanged)	and	also	gzip	compressed.	SSH	Is	sometimes
used	as	a	fall-back	when	iQuery	communication	fails.	iQuery	Can	be	used
through	the	management	or	TMM	switch	interfaces.
	
iQuery	is	used	for	a	number	of	purposes	when	a	device	is	under	the	management
of	Enterprise	Manager	but	primarily	for	collecting	statistics	and	configurations.
It	is	also	used	for	communication	between	the	LTM	and	GTM	modules.
	

Full	Application	Proxy
The	first	release	of	TMOS,	v9	in	2005	introduced	the	Full	Application	Proxy;
providing	a	significant	improvement	in	functionality	over	the	prior	Packet	Based
Proxy	architecture	used	in	previous	products.	The	Packet	Based	Proxy	(covered
in	the	next	section)	is	still	available	and	can	still	be	the	most	desirable,	high
performance	solution	where	only	L2-L4	functions	are	required.

	
The	Full	Application	Proxy	architecture	is	just	that;	it	functions	as	a	proxy	that
fully	and	completely	separates	the	client	and	server	sides	of	a	connection.	There
are	in	fact	two	connections;	the	client	side	connection	is	terminated	on	the	proxy
(the	load	balancer)	and	a	new,	separate	connection	is	established	to	the	server.
The	proxy	acts	in	the	role	of	server	to	the	client	and	client	to	the	real	server.
There	are	two	related	connection	table	entries	too;	one	for	client	side,	one	for
server	side.	Each	can	have	independent	parameters	applied,	such	as	idle
timeouts,	buffers,	MTU,	window	size	and	so	on.	The	following	diagram
demonstrates	this	full	proxy	functionality	in	respect	to	the	TCP/IP	connections;

	

	

This	allows	for	a	huge	number	of	features	and	functions	to	be	dynamically
applied	to	each	connection	separately,	as	well	as	the	inspection,	manipulation
and	modification	of	application	layer	data.	This	architecture	provides	the
foundation	for	many	of	the	advanced	features	described	in	this	book	(as	well	as
many,	many	more	that	are	not)	such	as;	iRules	(working	above	OSI	Model	layer
four),	advanced	Persistence	methods,	SSL	offload,	TCP	Optimisations	and
HTTP	Compression,	Caching	and	Pipelining.	If	you	don’t	actually	require	any	of
these	features	or	the	benefits	of	two	independent	connections	then	using	the
Packet	Based	Proxy	is	probably	preferable	as	it	is	simpler	and	will	provide	even
higher	performance.
	

Note	in	some	documentation	and	other	materials	published	by	F5	the	Full
Application	Proxy	is	sometimes	referred	to	as	the	Fast	Application	Proxy.
	

Packet	Based	Proxy/FastL4
A	Packet	Based	Proxy	architecture	is	what	was	employed	in	the	first	generation
of	load	balancers	and	generally	only	operates	up	to	OSI	Model	layer	four,	the
transport	layer.	Sometimes	referred	to	as	a	Half	Proxy,	there	is	only	a	single
connection	which	the	load	balancer	modifies	the	TCP/IP	parameters	of,	without
the	client	or	server	being	aware.	The	half	proxy	does	not	act	as	either	a	client	or
server	from	a	TCP/IP	perspective.	The	actual	connection	state	and	flow	of
packets	is	generally	not	controlled	in	any	way.	The	following	diagram
demonstrates	this	half	proxy	functionality	in	respect	to	the	TCP/IP	connection;

	

	
Unlike	with	the	Full	Application	Proxy,	the	advanced	features	described	in	this
book	(as	well	as	many,	many	more	that	are	not)	such	as;	iRules	(working	above
OSI	Model	layer	four),	advanced	Persistence	methods,	SSL	offload,	TCP
Optimisations	and	HTTP	Compression,	Caching	and	Pipelining	are	not	available

with	the	Packet	Based	Proxy.

	

Note	that	even	though	a	Packet	Based	Proxy	operates	up	to	layer
four,	the	Full	Application	Proxy	still	provides	some	advantages
over	it	even	at	this	layer,	due	to	its	use	of	separate	client	and	server
side	connections	and	the	resulting	ability	to	modify	and	control
separate	parameters	for	each.

	
	

Note	that	the	lines	between	the	half	and	full	proxy	can	sometimes
get	rather	blurry	as	one	obviously	evolved	from	the	other	resulting
in	features	that	can	be	common	to	both.	In	the	most	simplistic
terms,	the	half	proxy	does	not	does	not	act	as	a	TCP/IP	client	or
server;	it	operates	transparently	with	the	single	connection
established	between	the	real	client	and	server.	The	full	proxy	acts
as	a	TCP/IP	server	to	the	client	and	client	to	the	real	server;	it
terminates	the	first	and	initiates	the	second	and	thus	there	are	two
independent	connections.

	

High	Availability	(HA)
TMOS	Offers	a	wide	range	of	software	HA	features	when	two	or	more	BIG-IP
physical	or	virtual	appliances	are	deployed.	HA	is	essential	considering	the	BIG-
IP’s	typically	central	position	in	the	network	and	the	applications	and	services
provided	through	it.	These	features	(along	with	many	security	focussed	features
don’t	forget)	ensure	continuity	of	service	in	as	many	failure	scenarios	as	possible
and	include;
	

HA	Clusters	(the	focus	of	this	section	and	the	exam)
Device	Service	Clustering	(DSC)
Device	Groups	(DGs)
ConfigSync
Traffic	Groups	(TGs)
Floating	Self	IPs
MAC	Masquerade
Serial	and	Network	Failover
Failover
Mirroring
Fast	Failover	HA	Groups	(trunks	and	pool	members)
VLAN	Fail-safe	(VLAN	traffic)
System	Fail-safe	(services	and	switch	board)
Minimum	Blades	Up
Trunking	&	LACP
	

The	exam	only	requires	an	understanding	of	two	member	HA	Clusters	and	their
two	operating	modes;	Active/Active	and	Active/Standby,	discussed	in	the
following	sections.
	
Active/Standby
With	an	Active/Standby	two	member	HA	cluster,	one	unit	is	active	and
processes	all	traffic	and	a	second	is	standby	and	does	not;	the	entire	device
configuration	is	typically	synchronised	between	devices	and	connection	and
persistence	state	data	can	also	be	mirrored.	In	the	event	that	a	failure	is	detected
on	the	active	member,	all	traffic	processing	moves	to	the	standby	member,
which	becomes	active.

	

	
Note	that	HA	pair	failover	(or	failback)	is	an	all	or	nothing	affair	unless	using
active/active	mode;	all	Virtual	Addresses,	Floating	Self	IPs,	MAC	Masquerade
addresses,	Address	Translations,	traffic	and	traffic	processing	moves	between
the	two	devices.
	

Note	Node	and	Pool	Member	Health	Monitors,	ICMP,	ARP,
Packet	Filters	and	other	security	features	and	dynamic	routing
protocols	always	operate	on	all	operational	cluster	members,

regardless	of	state.

	

Active/Active
With	an	Active/Active	two	member	HA	cluster,	specific	traffic	processing
objects	(Virtual	Addresses,	Floating	Self	IP	Addresses,	MAC	Masquerade
Addresses	and	Address	Translations)	are	assigned	to	and	process	traffic	(are
active)	on	a	particular	cluster	member	until	a	failure	occurs.	Other	objects	are
assigned	to	and	process	traffic	on	the	other	cluster	member,	again,	until	a	failure
occurs.
	

	
When	a	failure	does	occurs	on	a	cluster	member,	only	the	traffic	processing
objects	active	on	that	member	move	to	the	remaining	member.	As	with
Active/Standby,	the	entire	device	configuration	is	typically	synchronised
between	devices	and	connection	and	persistence	state	data	can	also	be	mirrored.
	

Note	Node	and	Pool	Member	Health	Monitors,	ICMP,	ARP,
Packet	Filters	and	other	security	features	and	dynamic	routing
protocols	always	operate	on	all	operational	cluster	members,

regardless	of	state.

Chapter	Summary
Access	Policy	Manager	(APM)	offers	a	unified,	centralised	access	security
solution	for	applications	and	networks,	at	typical	TMM	scale	and
performance;	up	to	1600	logins	per	second	and	100,000	concurrent	users.
	
LTM	is	in	its	purest	form	a	very	sophisticated	load	balancer	with	a
significant	amount	of	additional	features	designed	to	improve	network,
server	and	application	performance,	security,	flexibility,	control,	visibility
and	management.
	
Global	Traffic	Manager	is	a	TMOS	Module	and	is	part	of	the	core,	long
standing	F5	product	set.	GTM	primarily	provides	DNS	based	'global'
server	load	balancing	(GSLB)	for	IPv4	and	IPv6	(inter-Data	Centre)	rather
than	LTM’s	intended	intra-Data	Centre	operation.
	
Edge	Gateway	is	a	combination	of	the	APM,	WA	and	WOM	modules,
providing	secure	remote	access	(RAS)	gateway
	
iRules	are	available	with	LTM	and	other	TMOS	system	modules	including
GTM	and	ASM.	They	are	user	created	Tool	Command	Language	(Tcl)
programs	or	scripts	that	are	assigned	to	Virtual	Servers	and	run	(or
triggered)	by	one	or	more	user	specified	Events	related	to	that	Virtual
Server,	such	as	a	new	TCP	connection	or	HTTP	GET	request.
	
iHealth	is	a	free	online	tool	that	can	be	used	to	check	the	health,	security
and	configuration	of	a	device	and	ensure	it	is	running	efficiently.	It
revolves	around	Qkview	files	(uploaded	by	the	user)	which	can	be	easily
generated	on	any	F5	BIG-IP	device	using	the	qkview	command	or	using
the	Web	based	GUI.
	
iQuery	is	an	F5	Networks	proprietary,	TCP-based	(port	4353)	XML-like
protocol	that	exchanges	configuration,	statistical,	probe	and	metric
information	between	BIG-IP	platforms.
	
The	Full	Application	Proxy	architecture	functions	as	a	proxy	that	fully	and
completely	separates	the	client	and	server	sides	of	a	connection.	There	are

in	fact	two	connections;	the	client	side	connection	is	terminated	on	the
proxy	(the	load	balancer)	and	a	new,	separate	connection	is	established	to
the	server.

	

Chapter	Review
In	order	to	test	your	knowledge	and	understanding	of	this	chapter,	please	answer
the	following	questions.	You	will	find	the	answers	and	explanations	of	the
questions	at	the	end	of	this	chapter.

	
1.	 The	CEO	wants	you	to	set	up	a	remote	access	solution	for	applications	and

networks	and	wants	you	to	implement	this	on	your	F5	BIG-IP	device.
What	BIG-IP	module	do	you	need	to	enable	and	configure	in	order	to
achieve	this?
	

a.	 EM	-	Enterprise	Manager
	

b.	 LTM	-	Local	Traffic	Manager
	

c.	 GTM	-	Global	Traffic	Manager
	

d.	 APM	-	Access	Policy	Manager

	
2.	 What	BIG-IP	module	protects	you	from	a	wide	range	of	attacks	such	as

SMTP	application	attacks,	SQL	Injections	and	Web	scraping?
	

a.	 ASM	-	Application	Security	Manager
	

b.	 WAM	-	WebAccelerator
	

c.	 LTM	-	Local	Traffic	Manager
	

d.	 APM	-	Access	Policy	Manager

	
3.	 What	features	does	the	BIG-IP	module,	Enterprise	Manager	(EM)	have?

Select	all	answers	that	apply.
	

a.	 Centralized	configuration	management
	

b.	 Load	Balance	incoming	network	traffic.
	

c.	 Automates	common	tasks	including	device	configuration	backups
	

d.	 Optimizes	network	traffic
	

4.	 What	is	the	primary	purpose	of	the	BIG-IP	module	GTM?
	

a.	 Provide	load	balancing	for	intra-Data	Centre	operation	making	decisions
based	on	for	example	application	data	and	network	conditions.
	

b.	 Provide	central	management	for	all	BIG-IP	devices	located	in	your
environment.
	

c.	 Provide	DNS	based	'global'	server	load	balancing	(GSLB)	for	inter-Data
Centre.
	

d.	 Provide	file	system	virtualization	and	load	balancing	of	the	physical
storage	environment.

	

5.	 What	scripting	language	is	iRules	based	on?
	

a.	 Lua
	

b.	 Perl
	

c.	 PHP
	

d.	 Tcl
	
6.	 Which	of	the	following	is	the	correct	description	of	an	iRule?

	
a.	 They	are	user	created	Tool	Command	Language	scripts	that	can	be	used	to

make	load	balancing	decisions,	modify	packet	content	and	direct	traffic
flow.
	

b.	 They	are	open	SOAP	(XML)	web	services	and	REST	enabled	API	that
provides	control	of	the	configuration	of	an	F5	BIG-IP.
	

c.	 They	are	used	for	deploying	and	managing	application	delivery	services
and	their	related	BIG-IP	configuration.
	

d.	 They	collect	troubleshooting	information	that	can	be	sent	to	F5	support.
	

7.	 In	the	F5	BIG-IP,	which	Proxy	mode	would	you	need	to	use	to	allow	for
full	traffic	inspection,	compression,	SSL	termination?
	

a.	 Packet	Based	Proxy
	

b.	 Full	Application	Proxy

Chapter	Review:	Answers
You	will	find	the	answers	to	the	chapter	review	questions	below:

	
1.	 The	correct	answer	is:	D

	
a.	 EM	-	Enterprise	Manager

	
b.	 LTM	-	Local	Traffic	Manager

	
c.	 GTM	-	Global	Traffic	Manager

	
d.	 APM	-	Access	Policy	Manager

EM	-	Enterprise	Manager	is	used	to	manage	multiple	F5	BIG-IP	devices	in	your
network.
LTM	-	Local	Traffic	Manager	is	used	to	load	balance	traffic	between	your
servers.

GTM	-	Global	Traffic	Manager	provides	DNS	based	'global'	server	load
balancing	(GSLB).
APM	-	Access	Policy	Manager	offers	a	unified,	centralised	access	security
solution	for	applications	and	networks.

	
2.	 The	correct	answer	is:	A

	
a.	 ASM	-	Application	Security	Manager

	
b.	 WAM	-	WebAccelerator

	
c.	 LTM	-	Local	Traffic	Manager

	
d.	 APM	-	Access	Policy	Manager

	
ASM	-	Application	Security	Manager	provides	advanced	web	application	aware
‘firewall’	(WAF)	functionality	such	as	web	scraping,	SQL	Injection	and	SMTP

Application	attacks.

WAM	–	WebAccelerator	provides	a	host	of	features	designed	to	optimise	and
increase	HTTP-based	website	performance	and	responsiveness.

LTM	-	Local	Traffic	Manager	is	used	to	load	balance	traffic	between	your
servers.
APM	-	Access	Policy	Manager	offers	a	unified,	centralised	access	security
solution	for	applications	and	networks.

	
3.	 The	correct	answers	are:	A,C

	
a.	 Centralized	configuration	management

	
b.	 Load	Balance	incoming	network	traffic.

	
c.	 Automates	common	tasks	including	device	configuration	backups

	
d.	 Optimizes	network	traffic

	

EM	-	Enterprise	Manager	is	used	to	manage	multiple	F5	BIG-IP	devices	in	your
network	with	features	such	as	centralized	configuration	management	and
automation	of	common	tasks.
	

4.	 The	correct	answer	is:	C
	
a.	 Provide	load	balancing	for	intra-Data	Centre	operation	making	decisions

based	on	for	example	application	data	and	network	conditions.
	

b.	 Provide	central	management	for	all	BIG-IP	devices	located	in	your
environment.
	

c.	 Provide	DNS	based	'global'	server	load	balancing	(GSLB)	for	inter-
Data	Centre.
	

d.	 Provide	file	system	virtualization	and	load	balancing	of	the	physical
storage	environment.

GTM	-	Global	Traffic	Manager	provides	DNS	based	'global'	server	load
balancing	(GSLB).

File	system	virtualisation,	load	balancing	and	logical	abstraction	of	the	physical
storage	environment	is	something	that	the	BIG-IP	module	ARX	handles.
Central	Management	is	handled	by	the	BIG-IP	module	Enterprise	Manager	(EM)

LTM	–	Local	Traffic	Manager	is	responsible	for	load	balancing	intra-Data
Centre	operation	and	makes	decisions	based	on	for	example	application	data	and
network	conditions.
	

5.	 The	correct	answer	is:	D
	

a.	 Lua
	

b.	 Perl
	

c.	 PHP
	

d.	 Tcl
	
6.	 The	correct	answer	is:	A

	
a.	 They	are	user	created	Tool	Command	Language	scripts	that	can	be

used	to	make	load	balancing	decisions,	modify	packet	content	and
direct	traffic	flow.
	

b.	 They	are	open	SOAP	(XML)	web	services	and	REST	enabled	API	that
provides	control	of	the	configuration	of	an	F5	BIG-IP.
	

c.	 They	are	used	for	deploying	and	managing	application	delivery	services
and	their	related	BIG-IP	configuration.
	

d.	 They	collect	troubleshooting	information	that	can	be	sent	to	F5	support.
iControl	is	an	open	SOAP	(XML)	web	services	and	REST	enabled	API	(and
related	SDK)	that	provides	control	of	the	configuration	of	an	F5	BIG-IP	as	well
as	access	to	configuration	object	status	and	statistics.

iApps	is	the	name	for	a	collection	of	features	available	from	TMOS	v11
onwards;	a	so-called	‘framework’	for	deploying	and	managing	application
delivery	services	and	their	related	BIG-IP	configuration.
iHealth	is	a	free	online	tool	available	here	that	can	be	used	to	check	the	health,
security	and	configuration	of	a	device	and	ensure	it	is	running	efficiently.	This
information	can	be	sent	to	F5	support	to	help	the	troubleshooting	of	an	on-going
case.

	
7.	 The	correct	answer	is:	B

	
a.	 Packet	Based	Proxy

	
b.	 Full	Application	Proxy

	
The	first	release	of	TMOS,	v9	in	2005	introduced	the	Full	Application	Proxy;
providing	a	significant	improvement	in	functionality	over	the	prior	Packet	Based
Proxy	architecture	used	in	previous	products.

10.	Load	Balancing	Essentials
	

So,	now	we’ve	covered	the	OSI	model,	basic	networking	concepts	and	operation
and	the	software	products	available	it’s	finally	time	to	move	on	to	the	heart	of
what	application	delivery	is	all	about.	It	is	not	necessarily	as	simple	and	clear	cut
as	you	might	think	so	please	don’t	skip	this	section	believing	you	know	this
subject	inside-out	already,	you	might	be	surprised.
	

What	Is	A	Load	Balancer?
In	its	most	basic	form	a	load	balancer	performs	three	interrelated	functions;
monitoring	hosts	(servers,	caches,	routers	or	anything	else),	acting	as	a	proxy	for
those	hosts	and	load	balancing	traffic	across	them.
	
Destination	‘real’	host	availability	and	possibly	metrics	related	to	performance
and	load	are	constantly	monitored	by	the	load	balancer	(the	monitoring
function).	The	load	balancer	receives	traffic	(packets,	connections	or	requests)
that	would	otherwise	be	sent	directly	to	a	single	host	if	it	wasn't	in	place	(the
proxy	function)	and	directs	that	traffic	to	one	of	any	number	of	destination	hosts
(physical	or	virtual)	that	actually	service	that	traffic	(the	load	balancing
function).
	
Monitoring	information	is	used	to	influence	load	balancing	decisions	in	real
time.	For	instance,	an	unavailable	server	will	not	have	any	traffic	sent	to	it;	a
server	under	high	load	can	have	less	traffic	sent	to	it	and	so	on.	Many	different
methods	and	algorithms	can	be	configured	and	used	to	control	the	'balance'	of
traffic	across	those	hosts.
	
The	following	diagram	illustrates	these	functions	using	the	Full	Application
Proxy,	in	relation	to	a	HTTP	flow.
	

	
	

Automatic	Port	&	Address	Translation

Just	so	you	fully	understand	the	TCP/IP	implications,	it	is	worth	noting	that
when	load	balancing;
	

NAT	of	the	destination	IP	address	occurs	when	the	inbound	traffic	is	sent
to	a	real	server	host.
	

When	using	the	Full	Application	Proxy	architecture,	as	the	load
balancer	is	acting	as	a	full	proxy	it’s	not	actually	NAT;	the	inbound
connection	is	terminated	and	a	new	outbound	one	created	with	a
different	destination	IP	address.	Of	course	it’s	far	easier	to	think	of	it
as	NAT.
	
When	using	the	Packet	Based	Proxy	architecture,	it	is	actually	NAT.
	

	
Translation	of	the	destination	TCP	or	UDP	port	occurs	when	the	inbound
traffic	is	sent	to	a	real	server	host	(if	the	Virtual	Server	and	real	server
listening	ports	are	different).
	

When	using	the	Full	Application	Proxy	architecture,	as	with	NAT,
port	translation	isn’t	really	occurring	but	it’s	probably	easier	to	think
of	it	like	that.
	
When	using	the	Packet	Based	Proxy	architecture,	it	is	actually	PAT.

	
NAT	of	the	source	IP	address	occurs	when	the	outbound	traffic	is	sent	back
to	the	client	(this	is	the	reverse	of	the	inbound	NAT).
	

When	using	the	Full	Application	Proxy	architecture,	as	noted
previously,	as	the	load	balancer	is	acting	as	a	full	proxy	it’s	not
actually	NAT.
	
When	using	the	Packet	Based	Proxy	architecture,	it	is	actually	NAT.

	

Translation	of	the	source	TCP	or	UDP	port	occurs	when	the	outbound
traffic	is	sent	back	to	the	client	(if	the	Virtual	Server	and	real	server
listening	ports	are	different)	(this	is	the	reverse	of	the	inbound	port
translation).
	

When	using	the	Full	Application	Proxy	architecture,	as	noted
previously,	port	translation	isn’t	really	occurring	but	it’s	probably
easier	to	think	of	it	like	that.
	
When	using	the	Packet	Based	Proxy	architecture,	it	is	actually	PAT.

	
This	all	occurs	transparently	to	the	connecting	client	host.
	
This	‘NATting’	does	not	need	to	be	configured;	it	is	automatic,	even	where
the	Virtual	Address	is	IPv6	and	the	real	servers	use	IPv4.

	
The	following	diagrams	illustrate	this	automatic	translation	for	inbound	and
outbound	packets	respectively,	when	using	the	Full	Application	Proxy.
	

	

	

Load	Balancing	Methods
TMOS	Supports	a	large	number	of	load	balancing	methods	(or	algorithms)	used
to	automatically	distribute	connections	and	traffic	across	real	servers.	The	exam
only	covers	two	of	the	most	popular	and	simple	methods;	Round	Robin	and
Least	Connections,	which	are	described	in	detail	next.	As	you’ll	find	as	you
progress	through	the	certification	program,	most	of	the	more	advanced	methods
are	based	on	one	of	these	two.

	

Note	features	such	as	Persistence	can	override	the	load	balancing
method	and	logic.

	

Round	Robin
This	is	the	simplest	(and	default)	form	of	Load	Balancing;	each	new	connection
is	sent	to	the	next	Pool	Member	in	the	Pool	in	a	strict	circular	(Round	Robin)
fashion.	If	there	are	two	Pool	Members	and	three	clients	connect	one	after	the
other,	the	first	client	connection	will	be	sent	to	the	first	Pool	Member,	the	second
to	the	second	and	the	third	back	to	the	first	Pool	Member.
	

This	is	a	so-called	static	Load	Balancing	method;	aside	from	Pool	Member
status,	no	real-time,	near-time	or	historical	information	influences	how	load
balancing	occurs	and	the	distribution	of	connections	between	Pool	Members	is
strictly	equal.
	

This	method	is	suitable	where	the	real	servers	have	similar	capabilities.
	

	

Least	Connections
This	method	load	balances	new	connections	to	whichever	real	server	has	the
least	number	of	active	connections	and	is	recommended	by	F5	in	most	cases.
	

This	is	a	dynamic	Load	Balancing	method;	real-time	information	influences	how
load	balancing	occurs	and	the	distribution	of	connections	between	Pool
Members	are	unequal	and	changes	over	time.
	
This	method	is	suitable	where	the	real	servers	have	similar	capabilities.

	
As	each	connection	can	have	differing	overheads	(one	could	related	to	a	request
for	a	HTML	page,	the	other	a	20Mb	PDF	document	that	needs	to	be	generated
and	downloaded)	this	is	not	a	reliable	way	of	distributing	bandwidth	and
processing	load	between	servers.

	
	

	

Persistence
In	most	cases	Persistence,	also	known	as	stickiness,	affinity	or	session
persistence,	is	used	to	direct	additional	connections	from	a	client	to	the	same
Virtual	Server	to	the	same	real	server	as	the	existing	(initial)	connection.	This
ensures	that	any	state	information	stored	only	on	that	server,	related	to	the
session	the	connections	form	a	part	of,	is	valid.	If	those	connections	were	Load
Balanced	to	different	servers	the	lack	of	the	session	state	context	(and	loss	of
server	affinity)	will	most	likely	result	in	application	errors.

	
Just	to	ensure	clarity,	let’s	define	what	a	session	is;	an	Application	Session	is	the
communication	channel	between	two	hosts,	used	to	exchange	information	and
complete	Transactions	of	some	kind.	It	can	be	comprised	of	one	or	more
underlying	TCP	connections	between	the	client	and	server	(virtual	or	otherwise).
A	session	is	typically	stateful,	with	various	parameters	and	variables	(including
unique	IDs	and	authentication	information)	assigned	and	valid	only	for	the
session	in	question.	See	the	HTTP	Pipelining	section	of	the	Application	Delivery
Platforms	chapter	for	an	example	of	a	protocol	that	uses	multiple	TCP
connections	within	a	single	session	to	increase	performance.
	
With	some	message	based	protocols	the	opposite	is	true;	rather	than	one	session
being	capable	of	consisting	of	multiple	connections,	one	connection	may	contain
data	for	multiple	sessions.
	
However,	in	other	cases,	such	as	when	load	balancing	across	caches,	maintaining
session	state	isn’t	required	and	persistence	is	instead	used	to	ensure	multiple
requests	(from	multiple	sources)	for	the	same	resource	are	sent	to	the	same	Pool
Member.

	
The	types	of	traffic	or	applications	that	Persistence	is	generally	used	with
include;	HTTP/S	and	related	applications,	SIP	and	other	voice	technologies,
Remote	Access	and	Diameter.	In	most	cases	any	protocol	or	application	that
requires	authentication	which	is	performed	by	the	real	server	and	not	shared
between	all	real	servers	will	require	Persistence.

	

Note	Persistence	only	applies	after	the	first	load	balancing	decision
is	made.

	
The	exam	doesn’t	require	you	to	have	knowledge	of	any	specific	Persistence
methods,	but	in	order	to	aid	your	understanding	of	the	concept	in	general;	the
simplest	method	available	is	discussed	next.

	
	

Source	Address	(aka	Simple)
This	method	persists	connections	based	on	the	source	IP	address	of	a	client	and
can	also	be	configured	with	an	IP	netmask,	which	allows	all	connections	from	a
particular	IP	subnet	to	be	persisted	together	to	the	same	real	server.
	

The	use	of	NAT,	a	proxy	or	other	technologies	which	mask	the	true	client	source
IP	addresses	and	aggregate	them	behind	one	or	very	few	addresses	will	make
this	Persistence	method	ineffective.
	

	

OneConnect
Also	known	as	Connection	Pooling,	the	OneConnect	feature	minimises	server-
side	connections	by	re-using	previously	established	connections	for	subsequent
client	requests.	Rather	than	closing	an	idle	connection	to	a	real	server	(Pool
Member)	and	reopening	a	new	one	for	the	next	client	request	that	gets	load
balanced	to	that	server,	the	connection	is	maintained	and	re-used,	within	user
configurable	limits.	This	is	demonstrated	in	the	following	diagram.
	

	

The	Client	&	Server
In	order	to	fully	understand	how	network	communications	work,	you	need	to	be
able	to	understand	the	difference	between	a	client	and	a	server.	In	most	scenarios
it	is	very	easy	to	identify	but	there	are	occasions	when	you	really	need	to	think
hard	to	tell	which	one	is	which.	The	client	and	server	concept	relates	to	layer
three	and	more	specifically	IP.

	

Exam	Tip								Understanding	the	difference	between	a	server	and
a	client	is	fundamental	for	passing	this	exam.	Since	an	F5	device
sits	between	the	client	and	the	server	things	get	slightly	more
complex,	we’ll	cover	this	shortly.
	

	

What	Is	a	Server?
In	most	cases	a	server	is	a	large-scale	computer	which	provides	files	or	other
services	to	clients	and	often	has	more	processing	power	and	other	resources	than
a	regular	office	computer.	However,	where	TCP	is	concerned	a	server	is	simply
a	host	that	“serves”	data	or	a	service	to	clients.	TCP	isn’t	concerned	with	the	size
of	a	server;	it	might	be	a	small	NAS,	a	multimillion	dollar	mainframe,	an	office
computer	or	an	F5	device,	it	doesn’t	matter.
	

What	does	is	that	clients	initiate	the	connection	to	a	server,	not	the	other	way
around.
	

What	Is	a	Client?
With	TCP	a	client	is	the	host	which	connects	to	and	receives	data	from	the
server.	As	with	a	TCP	server,	the	physical	attributes	of	a	client	are	irrelevant.	If	a
host	initiates	a	connection	it	is	the	client.
	

F5	Device	Acts	As	Both	Server	and	Client
An	F5	device	can	be	both	server	and	client	and	is	often	both.	The	server	is	the
host	that	serves	the	data	to	the	client	and	the	client	is	the	host	that	receives	that

data.	Please	view	the	following	diagram.
	

	

When	you	are	communicating	with	a	server	through	an	F5	device	(using	the	full
proxy)	there	are	actually	two	connections;	one	between	the	client	host	and	the	F5
and	one	between	the	F5	and	the	server	host;
	

The	host	initiates	a	connection	to	a	virtual	server	IP	address,	which	the	F5
receives.	In	this	case	the	host	is	the	TCP	client	and	the	F5	is	the	TCP
server.
	
Next	the	F5	will	initiate	a	new,	related	connection	(on	behalf	of	the	host)
with	the	server	and	passes	the	hosts	data	through	to	the	server.	Now	the	F5
is	the	TCP	client	and	the	server	is	the	TCP	server.

	

Exam	Tip								In	order	to	pass	the	exam	it	is	very	important	to
understand	this	concept.	The	F5	maintains	two	connections	and
acts	as	both	a	TCP	client	and	server	at	the	same	time.

	
	

Chapter	Summary
In	its	most	basic	form	a	load	balancer	performs	three	interrelated	functions;
monitoring	hosts	(servers,	caches,	routers	or	anything	else),	acting	as	a
proxy	for	those	hosts	and	load	balancing	traffic	across	them.

	
Round	Robin	is	the	simplest	(and	default)	form	of	Load	Balancing;	each
new	connection	is	sent	to	the	next	Pool	Member	in	the	Pool	in	a	strict
circular	(Round	Robin)	fashion.

	
The	load	balancing	method	'Least	Connections'	load	balances	new
connections	to	whichever	real	server	has	the	least	number	of	active
connections	and	is	recommended	by	F5	in	most	cases.

	
In	most	cases	Persistence,	also	known	as	stickiness,	affinity	or	session
persistence,	is	used	to	direct	additional	connections	from	a	client	to	the
same	Virtual	Server	to	the	same	real	server	as	the	existing	(initial)
connection.	This	ensures	that	any	state	information	stored	only	on	that
server,	related	to	the	session	the	connections	form	a	part	of,	is	valid

	
An	F5	device	can	be	both	server	and	client	and	is	often	both.

Chapter	Review
In	order	to	test	your	knowledge	and	understanding	of	this	chapter,	please	answer
the	following	questions.	You	will	find	the	answers	and	explanations	of	the
questions	at	the	end	of	this	chapter.

1.	 What	load	balancing	method	distributes	connections	between	Pool
Members	in	a	strict	circular	fashion?

	

a.	 Round	Robin
	

b.	 Least	Connections
	

2.	 Is	Least	Connections	a	static	or	dynamic	load	balancing	method?
	

a.	 Static
	

b.	 Dynamic
	
	

3.	 What	feature	ensures	that	the	incoming	connections	are	distributed	to	the
same	pool	member	as	the	initial	connection?

	

a.	 OneConnect
	

b.	 Round	Robin
	

c.	 Persistence
	

d.	 iQuery
	

Chapter	Review:	Answers
You	will	find	the	answers	to	the	chapter	review	questions	below:

1.	 The	correct	answer	is:	A
	

a.	 Round	Robin
b.	 Least	Connections

	

Round	Robin	is	the	simplest	(and	default)	form	of	Load	Balancing;	each	new
connection	is	sent	to	the	next	Pool	Member	in	the	Pool	in	a	strict	circular	(Round
Robin)	fashion
	

2.	 The	correct	answer	is:	B
	
a.	 Static
b.	 Dynamic

	
Least	Connections	is	a	dynamic	Load	Balancing	method;	real-time	information
influences	how	load	balancing	occurs	and	the	distribution	of	connections
between	Pool	Members	are	unequal	and	changes	over	time.

	

3.	 The	correct	answer	is:	C

	
a.	 OneConnect

	
b.	 Round	Robin

	
c.	 Persistence

	
d.	 iQuery

	
Persistence,	also	known	as	stickiness,	affinity	or	session	persistence	is	used	to
direct	additional	connections	from	a	client	to	the	same	Virtual	Server	to	the	same
real	server	as	the	existing	(initial)	connection.

	
OneConnect	minimizes	server-side	connections	by	re-using	previously
established	connections	for	subsequent	client	requests.	Rather	than	closing	an
idle	connection	to	a	real	server	(Pool	Member)	and	reopening	a	new	one	for	the
next	client	request	that	gets	load	balanced	to	that	server,	the	connection	is
maintained	and	re-used,	within	user	configurable	limits.

11.	Security
	

Achieving	high	security	has	always	been	a	significant	challenge	for	any	IT
administrator.	It	seems	that	no	matter	how	effective	your	network	security	is,
hackers	are	always	one	step	ahead.		Nowadays	it	seems	that	every	decision	an	IT
administrator	makes	involves	security	of	some	sort.
	

There	is	always	a	balance	to	be	maintained	between	security	and	convenience
for	the	user	(or	administrator).	Finding	the	right	level	of	security	can	be	a
constant	challenge.	If	security	policy	is	too	strict,	users	feel	that	it	is	an
inconvenience	rather	than	something	worthwhile	and	beneficial	for	business.
	

In	this	chapter	we	will	discuss	the	core	concepts	of	security	and	take	a	look	at
some	of	the	most	common	solutions	that	are	used	to	provide	security	in
organizations,	without	affecting	availability.
	

Positive	&	Negative	Security	Models
In	optimal	environments,	the	security	is	impenetrable.	In	theory	you	can	make
any	network	environment	safe	from	attacks;	foreign	or	domestic,	internal	or
external,	but	in	reality	this	is	very	uncommon.	First	off,	most	hackers,
governments	or	other	‘actors’	are	far	ahead	when	it	comes	to	finding	ways	of
exploiting	systems	and	it	seems	they	can	always	find	a	way	to	make	a	safe
system	unsafe.	The	main	reason	however,	that	most	environments	are	not	100%
secure	is	quite	simply	the	cost.

	
Making	a	system	impenetrable	cost	a	lot	of	money	and	in	many	cases	is	not
worth	it.	The	security	systems	can	cost	more	than	the	information	is	worth	(or	its
loss	would	cost).	With	any	system,	host	or	network	you	need	to	evaluate	many
criteria	including	the	potential	risk	of	attack	or	compromise	and	the	impact	on
the	business,	product	or	service.	This	can	be	measured	in	a	number	of	ways
including;	financial	loss,	loss	of	trust,	loss	of	reputation,	downtime	and	legal	or
regulatory	penalties.	You	need	to	balance	your	security	based	on	the	potential
risks	versus	the	investment	needed	to	mitigate	these	risks.

	
IT	decisions	have	become	business	decisions

With	the	growth	in	networking,	the	internet	and	other	technologies,	IT
departments	started	to	adjust	their	security	based	upon	this	balance.	Many
business	models	started	to	change;	security	decisions	were	no	longer	purely	IT
decisions,	they	were	also	business	decisions.	Since	most	companies	are	almost
completely	dependent	on	IT	to	run	the	business,	IT	and	IT	security	have	become
core	business	functions.	Most	IT	products	need	to	be	business	efficient	but	also
as	secure	as	possible	and	this	combination	is	very	difficult	to	achieve.	In	most
cases	security	was	the	thing	that	had	to	step	down.	This	leads	to	“good	enough”
security	with	high	business	efficiency.	IT	departments	had	to	balance	between
total	security	and	total	functionality	and	this	lead	to	the	creation	of	two	different
security	models	that	are	often	used	today,	the	positive	and	negative	security
models.
	

Positive	vs.	Negative	Security	Models
Both	these	security	models	have	the	same	base	structure	and	both	operate

according	to	a	set	of	simple	rules.	These	rules	can	be	Access	Control	Lists
(ACLs),	antivirus	signatures	or	something	else	entirely.	Even	though	these
models	have	the	same	basic	structure	they	are	very	different	in	the	way	they
work.	The	positive	security	model	starts	with	the	approach	of	“block	everything”
and	is	then	built	upon	by	permitting	specific,	approved	traffic,	actions	or	other
functions.	Most	operating	systems	and	firewalls	work	in	this	manner	as	it	feels
safer.	So	an	undefined	positive	security	model	should	block	everything	from	the
start	(what	you	allow	is	the	positive).
	

A	negative	security	model	is	the	complete	opposite	of	this.	It	begins	with	the
approach	“allow	everything”	and	is	then	further	constructed	by	blocking
functions	based	on	known	previous	attacks	and	unwanted	content	and	behaviors
(what	you	deny	is	the	negative).	Every	rule	that	gets	added	to	a	negative	security
model	will	increase	the	security	of	the	policy.	So	at	the	start,	a	negative	security
model	will	allow	all	traffic	and	as	more	restrictions	are	added	the	security
increases.	The	traffic	that	passes	through	will	be	matched	against	a	“bad”	filter
(a	blacklist)	and	if	there	is	a	match	it	will	be	blocked	and	if	not,	it	will	be
permitted.
	

	
	

	
	

	
	
	

To	compare	these	models	to	a	real	world	scenario,	think	of	a	private	party,	the
party	being	for	invited	guests	only.	The	people	invited	by	the	host	are	allowed
in,	anyone	else	is	not.	This	would	be	the	positive	model.
	

If	on	the	other	hand	you	were	in	a	public	bar,	everyone	would	be	invited.	As
long	as	you	were	not	causing	any	problems	you	could	enter	and	leave	at	will.

But	if	you	caused	problems	(started	a	fight	for	instance)	you	would	be	thrown
out	and	banned	from	entering	the	bar	again.	This	would	be	the	negative	model.
	

The	differences	between	these	two	security	models	have	long	been	debated,	with
most	security	experts	arguing	that	the	positive	security	model	is	preferred
because	it	begins	from	the	most	secure	posture	and	gradually	increases	its
functionality.	However,	most	business	experts	claim	that	the	negative	security
model	is	best	because	it	starts	off	from	the	most	functional	posture	and	slowly
increases	its	security.
	

Both	groups	have	valid	points	but	ultimately	the	positive	and	negative	security
models	are	just	theoretical	and	in	real	life	scenarios,	a	security	policy	falls
somewhere	in	between.	This	creates	a	practical	balance	between	the	two.	A
negative	security	model	that	gets	more	secure	will	gradually	become	a	positive
security	model	and	a	positive	security	model	that	gets	more	functional	will
slowly	become	a	negative	security	model.
	

Real-World	Scenarios
In	order	to	determine	which	security	model	is	the	most	optimal	for	your
environment	there	are	a	number	of	factors	that	need	to	be	considered.	The
number	of	objects,	the	number	of	content	types,	how	often	the	content	changes
and	how	the	content	works	are	all	factors.	These	will	form	a	variability	scale.
Note	that	the	following	examples	relate	to	web	content	only.	For	instance	if	a
site	has	20-30	objects,	it	is	much	less	variable	than	a	site	that	has	over	600-700
objects.	A	website	with	a	few	pictures	and	some	texts	is	much	less	likely	to
change	than,	for	example,	a	news	site.
	

And	if	you	have	600	objects	that	work	with	the	same	format	they	are	less	likely
to	change	than	600	that	are	unique.	A	site	that	changes	once	every	year	is	less
variable	than	a	site	that	changes	every	day.	The	last	measurement	of	variability
is	based	on	the	complexity	of	the	site.
	

The	aim	of	the	variability	scale	is	to	achieve	the	maximum	security	for	your

needs	with	the	least	effort.	This	way	you	will	use	the	most	functional	model
while	having	the	best	possible	security.	There	is	therefore	no	security	model	that
is	better	than	the	other;	it	all	really	depends	on	the	content.
	

	

A	positive	security	model	will	still	likely	be	the	more	common	model	because
you	know	what	type	of	content	you	offer.	You	know	that	you	need	to	allow
HTTP	or	HTTPS	to	your	webserver	or	SMTP	to	your	email	server.	These
content	types	will	never	change	on	their	servers	so	that	is	why	a	positive	security
model	is	used.
	

But	if	you	have	an	R&D	department	which	introduces	new	services	on	new	ports
on	a	daily	basis,	all	of	those	requests	will	be	denied	from	the	start	and	they	will
have	to	make	a	request	for	changes	to	the	firewall	every	day.	In	such	an
environment	it	is	easier	to	have	a	negative	security	model	so	the	department	does
not	have	to	request	changes	all	the	time.	Attacks	that	are	known	to	the	network
will	continue	to	be	blocked.	But	still,	a	negative	model	could	allow	unknown
malicious	traffic	which	is	unattractive	to	most.
	

A	great	example	of	a	useful	negative	security	model	is	anti-virus	or	anti-spam.
Either	will	only	prevent	activity	or	block	content	based	on	signature	or	content
matches	(a	list	of	known	attacks,	behaviors	or	keywords)	they	have	been
configured	to	use.	Anything	that	does	not	match	the	signatures	is	permitted.

	

Conclusion
As	we’ve	explored,	the	positive	security	model	is	the	most	common	security
model	and	the	appropriate	model	for	most	network	devices	operating	at	layer
four	and/or	above.	The	negative	security	model	is	most	efficient	for	anti-virus,
anti-spam	and	environments	that	change	a	lot.	
	

The	security	model	you	choose	depends	on	what	environment	you	have	and
what	content	you	are	securing.	There	really	is	no	right	or	wrong	way	and	since
IT	decisions	have	become	business	decisions	you	might	have	to	adjust	according
to	the	business’	best	interest.
	

Authentication	and	Authorization
When	working	as	an	IT	technician	it	is	necessary	to	understand	the	difference
between	authentication	and	authorization.		Authentication	verifies	the	identity
and	validity	of	a	user.	This	is	the	most	fundamental	part	of	user-based	network
access	and	is	used	often	in	our	daily	lives.	When,	for	instance,	you	try	to	retrieve
a	package	at	the	post	office,	you	need	to	produce	some	sort	of	identification	to
prove	you	are	the	intended	recipient.	In	networking	though	that	identification
could	be	a	username	and	password,	an	SSL	certificate,	something	else	entirely	or
a	combination	of	these.

	
Without	authentication,	an	administrator	could	never	control	user	(or	machine)
access	to	networks	and	related	resources.	Authorization	is	closely	related	to
authentication	and	they	are	easily	confused.

	
When	logging	into	a	system	and	entering	your	username	and	password,	this	is
authentication,	not	authorization.	When	the	system	has	authenticated	you
(verified	your	identity)	it	then	checks	its	internal	database	to	see	what	resources
you	are	permitted	to	access,	this	is	authorization.

	

Authentication	Processes
There	are	many	different	ways	to	confirm	a	user’s	identity	and	it	all	depends	on
what	level	of	security	your	business	(or	its	customers)	requires.	There	are	three
different	methods	of	identifying	a	user	and	you	can	use	one	or	more	of	these;

	
Something	you	know	–	This	usually	takes	the	form	of	a	username	and
password	but	can	also	be	a	PIN	code	or	something	similar
	
Something	you	have	–	This	can	be	either	a	smartcard	or	a	physical
token	that	generates	a	random	number	which	you	send	to	the	server.	A
smart	card	is	like	a	credit	card	which	you	insert	into	a	device	that	is
attached	to	your	computer.

	
Something	you	are	–	Some	environments	require	that	you	provide	a

physical	attribute	(a	biometric).	This	is	achieved	by	scanning	a	unique
body	part	like	a	finger	print	or	the	retina	of	the	eye.

	

In	many	scenarios,	password	authentication	is	sufficient	and	this	has	been	the
case	for	many	years.	However,	more	and	more	companies	are	starting	to	use
smart	cards	and	security	tokens	in	addition	to	passwords	to	verify	a	user’s
identity.	This	is	more	likely	when	users	are	trying	to	gain	access	to	internal
resources	from	outside	the	office.	Combining	two	or	more	authentication	forms
(or	factors)	is	often	called	multifactor	authentication	or	two-factor
authentication.	Combining	password	authentication	and	security	tokens	is
currently	the	most	common	combination.
	

Centralized	Authentication
To	provide	simplified	account	management	and	greater	control	over	user
identities,	centralized	authentication	is	used.	With	centralized	authentication,
you	rely	on	a	single	(but	likely	redundant)	system	to	authenticate	users.	When
the	user	enters	their	credentials	at	the	system	they	are	trying	to	access,	that
system	relays	the	request	to	the	centralized	authentication	system,	which	then
confirms	the	user’s	identity	(or	not	if	it	isn’t	valid).	You	can	configure	many
resources,	for	instance	a	file	share	or	the	intranet	to	authenticate	against	this
centralized	system.	This	saves	both	time	and	administration	because	you	do	not
need	to	maintain	multiple	user	account	databases.		If	a	group	of	users	need
access	to	a	new	resource,	all	you	have	to	do	is	configure	the	resource	to	use	the
centralized	authentication	system	rather	than	its	own	and	add	the	correct	user
rights.
	

Authentication	also	enables	you	to	deploy	single	sign-on	which	is	advantageous.
We	will	cover	single	sign-on	in	greater	detail	in	the	SAML	section.
	

There	are	several	different	types	of	centralized	authentication	technologies	and
protocols	available	which	we’ll	explore	briefly	in	the	following	sections.
	

RADIUS

RADIUS	is	commonly	used	and	stands	for	Remote	Authentication	Dial	In	User
Server.	It	uses	UDP	port	1812	and	is	a	standard	that	defines	a	client/server
application	protocol	running	at	layer	7	of	the	OSI	model,	the	application	layer.
The	RADIUS	server	provides	authentication	and	authorization	for	the	different
resources	and	systems	that	receive	the	originating	request.	The	resource	in	the
following	example	is	the	server.	The	server	prompts	the	user	for	credentials	and
then	forwards	what	is	supplied	on	to	the	RADIUS	server	using	the	message
Access-Request.	The	RADIUS	server	checks	the	credentials	supplied	against	its
database	and	if	they	are	correct	and	the	user	has	permissions	to	access	the
resource,	it	sends	back	an	Access-Accept	message	to	the	originating	server.	The
whole	process	is	illustrated	next;
	

TACACS+
TACACS+	is	also	a	centralized	authentication	technology	and	stands	for,
Terminal	Access	Controller	Access-Control	System.	There	is	however	a	big
difference	as	to	how	TACACS	handles	its	authentication	process.	It	separates
authentication	and	authorization	into	individual	processes	and	uses	TCP	(port
49)	instead	of	UDP.	Cisco	originally	developed	TACACS+	as	an	open	standard
in	the	beginning	of	1993.
	

Authentication,	Authorization	&	Accounting	(AAA)

To	efficiently	control	user	access	to	computer	resources,	a	framework	called
Authentication,	Authorization	and	Accounting	(AAA)	is	often	used.	This
framework	combines	many	different	related	processes	that	are	very	important	in
securing	and	recording	access	to	the	IT-environment.	These	processes	include
controlling	access	to	resources,	auditing	the	usage	of	these	resources,	enforcing
IT	policies	and	providing	the	right	access	to	the	right	user.
	

As	we	already	discussed,	authentication	validates	the	user’s	identity;	this	is	the
first	function	of	the	AAA	framework.	You	can	validate	a	user’s	identity	through
various	means	as	explored	in	the	previous	section.
	

The	next	function	of	the	AAA	framework	is	authorization.	When	a	user	has	been
validated	there	is	a	need	to	ensure	that	the	user	has	access	to	the	resource(s)
required.	If	a	user	is	trying	to	access	a	file	share	or	a	server,	this	will	be	validated
by	a	database	in	the	directory	service	which	can	confirm	that	user	is	authorized;
this	is	covered	in	the	previous	section.
	

Last	but	not	least	we	have	accounting,	which	we’ve	not	discussed	so	far.
Accounting	is	used	to	measure	the	user’s	access	in	some	way.	This	could	include
how	often	a	user	accesses	a	certain	resource	or	the	amount	of	data	a	user	has	sent
or	received	during	a	particular	session.	You	can	use	this	information	to	analyze
trends	and	resource	utilization.	This	can	help	control	authorization	and	limit
access	if	people	do	not	use	this	resource	often	enough	or	plan	upgrade	activities
based	on	when	and	how	often	a	user	or	group	of	users	accesses	a	resource.
Accounting	information	can	also	be	used	for	user	and	customer	billing	in
relation	to,	for	instance,	a	mobile	phone	data	plan.
	

The	AAA	framework	is	often	implemented	by	a	server	that	controls	all	of	these
processes.	RADIUS	and	TACACS+	are	two	examples	of	protocols	and	related
server	software	that	support	AAA.
	

Security	Assertion	Markup	Language	(SAML)	Authentication
Single	Sign-On	(SSO)	is	exactly	what	the	name	implies.	SSO	enables	you	to	log

on	to	multiple	systems	or	sites	but	only	being	prompted	for	your	user	credentials
once.	This	is	something	end-users	love	as	it	minimizes	(almost	entirely
eliminates)	delays	caused	by	authentication	that	most	users	consider	an
interruption	and	inconvenience.	In	this	day	and	age	we	need	to	remember	so
many	different	passwords	and	codes,	as	well	as	carry	around	security	tokens	and
making	it	easier	for	the	users	is	much	appreciated.
	

SAML	is	a	standard	developed	for	this	purpose	and	especially	for	web	browser
single	sign-on.	Previous	implementations	of	web	browser	SSO	involved	cookies
but	this	was	only	available	on	a	single	domain.	The	reason	for	this	was	that
cookies	were	not	transferred	between	domains	and	sites	so	if	you	obtained	a
cookie	at	www.abc.com	it	could	not	get	transferred	to	www.xyz.com.
	

SAML	provides	a	solution	beyond	the	intranet	and	is	based	on	an	XML
framework.	It	exchanges	user	authentication,	entitlement	and	attribute
information.
	

You	can	find	out	more	about	how	SAML	works	in	Appendix	A	but	note	this	is
not	required	for	the	exam.
	

Exam	Tip								It	is	very	important	that	you	remember	what	SAML
is	used	for.

	

Virtual	Private	Networks	(VPNs)
Being	able	to	access	your	business	and	office	resources	(files,	websites,
applications	and	administrative	tools)	yet	work	from	any	location	is	something
that	has	been	possible	for	many	years	thanks	to	VPNs.	Yet	there	is	a	constant
drive	to	improve	this,	to	further	enhance	security	and	functionality	without
affecting	easy	access.

	
In	the	early	days	of	remote	access,	you	had	to	use	a	dial	up	modem	and	analogue
phone	line	and	call	in	to	your	office	which	would	be	using	a	dedicated	serial	line
which	was	both	slow	and	expensive.	Today	this	problem	no	longer	exists	thanks
to	the	wide	availability	of	high	speed	domestic	broadband	(and	cheap	high
bandwidth	circuits	in	general).	There	have	been	quite	a	few	VPN	technologies
over	the	years	and	they	keep	getting	better	and	better	in	terms	of	functionality
and	security.

	
Some	of	the	early	VPNs	required	certain	software	to	be	installed	and	configured.
The	most	recent	and	most	popular	VPN	of	choice	for	remote	user	access	is	SSL
VPN.	This	technology	makes	it	possible	to	access	the	corporate	network	simply
by	visiting	a	website	and	provide	valid	credentials.	Once	you	have	been
authenticated,	the	web	browser	will	launch	an	application	or	JAVA	applet	that
automatically	connects	you	to	the	corporate	network.

	
Being	able	to	connect	branch	offices	to	a	company’s	headquarters	or	head	office
and	globally	connect	everyone	has	also	been	very	difficult	and	expensive	in	the
past.	This	also	required	dedicated	or	leased	lines	and	as	mentioned	before,	this
was	very	expensive.	Now	there	are	IPsec	tunnels	that	connect	the	different
branch	offices;	they	both	secure	the	connections	and	lower	the	costs	because	the
Internet	is	used	rather	than	a	dedicated	private	network.

	

Note								Even	though	IPsec	tunnels	have	made	it	easier	to
connect	branch	offices	you	still	need	a	suitably	high	capacity
Internet	connection	in	order	for	them	function	properly.

	

IPsec	–	IP	Security
VPNs	were	initially	based	on	the	standard	IPsec	Protocol	suite,	which	was
developed	to	create	a	site-to-site	tunnel	between	branch	offices	(or	any	two
remote	sites)	and	secure	its	communication.	By	using	this	technology,	a	lot	of
companies	were	able	to	save	money	on	expensive	dedicated	lines	and	use	cheap
and	high	bandwidth	internet	connections	instead.

	
IPsec	establishes	a	tunnel	between	two	locations	and	secures	the	data	by	digitally
signing	and	encrypting	it	prior	to	transmission.	IPsec	provides	several	different
types	of	security	including:

	
Spoofing	Prevention	–	You	cannot	trick	the	recipient	by	claiming	to	be
someone	else;	the	identity	of	each	end	point	is	verified
	
Modification	Prevention	–	You	cannot	capture	a	packet,	modify	its
payload	and	send	it	on	without	it	being	detected

	
Protection	–	You	cannot	read	the	contents	of	the	packet	payload/data
because	it	is	encrypted.

	
Reuse	Prevention	–	You	cannot	reuse	any	encrypted	packets	or
discover	any	passwords	or	keys.

	

This	provides	end-to-end	protection,	which	means	that	the	information	is
secured	(as	just	detailed)	until	it	reaches	its	destination	(there’s	no	guarantee
after	that).	IPsec	is	an	extension	to	the	IP	protocol;	any	traffic	that	takes	the	form
of	IP	datagrams	can	be	encrypted	and	it	doesn’t	matter	what	type	of	information
is	carried	within.	The	OSI	layers	above	the	network	layer	are	not	aware	that	the
traffic	has	been	encrypted	or	part	of	a	VPN	in	the	first	place;	it	is	truly
remarkable.
	

In	the	early	days	of	VPNs,	IPsec	was	the	only	option	available	for	secure	remote
access.	Originally	IPsec	was	only	intended	for	securing	communications
between	locations	using	site-to-site	tunneling	and	it	therefore	had	its	limitations

when	it	was	used	in	securing	user	remote	access.	To	solve	this	problem,	another
remote	access	method	was	introduced,	SSL	VPN.	SSL	VPN	operates	using	the
Secure	Sockets	Layer	protocol	(which	also	secures	HTTPS)	and	has	become	the
most	common	VPN	solution	that	is	in	use	today	for	user	access.	This	will	be
discussed	later	in	this	chapter.
	

When	Should	You	Use	IPsec?
Since	IPsec	VPNs	were	originally	designed	for	site-to-site	access	it	is	still	the
best	method.	It	is	the	perfect	solution	when	you	need	to	have	a	constant
connection	between	two	locations.	This	could	be	between	the	headquarters	and
the	branch	office	or	a	connection	between	two	highly	secured	internal	servers.

	
There	are	still	organizations	that	implement	remote	access	using	IPsec	but	they
are	decreasing	in	number	and	instead	organizations	are	relying	on	the	much
more	convenient	solution,	SSL	VPN.
	

SSL	VPN
SSL	stands	for	Secure	Sockets	Layer	and	its	purpose	is	to	secure	transmissions
between	servers	and	clients.	SSL	is	a	protocol	that	has	been	implemented	into
many	different	applications	and	adds	a	good	layer	of	security.	For	instance
HTTP	uses	SSL	as	part	of	the	HTTPS	protocol.

	
SSL	encrypts	the	data	generated	by	applications;	it	was	originally	developed	by
Netscape	Communications	and	was	intended	to	protect	data	transmitted	between
a	server	and	client	using	HTTP.
	

Note								In	January	1999	Transport	Layer	Security	(TLS)
was	introduced	as	an	upgrade	of	the	highest	SSL	version
(v3).	The	difference	between	TLS	and	SSL	was	not	dramatic
but	significant	enough	that	it	was	given	a	new	name.	The
latest	TLS	version	at	the	moment	is	TLS	version	1.2.	Despite
this,	even	use	of	TLS	is	still	widely	referred	to	as	SSL,	a
VPN	over	TLS	still	referred	to	as	an	SSL	VPN.

	
An	SSL	VPN	protects	the	data	in	the	following	ways:													

	
Spoofing	Prevention	–	Server	and	clients	provide	their	credentials	in	order
to	confirm	the	identity	of	both	systems.
	
Modification	Prevention	–	Every	packet	is	signed	with	a	hash	function
called	HMAC	which	ensures	that	there	has	not	been	any	modification	to
the	packet.
	
Protection	–	The	data	is	encrypted	by	the	public	key	which	makes	sure
that	only	the	recipient	is	able	to	decrypt	and	receive	the	information.
	
Reuse	Prevention	–	You	cannot	reuse	any	encrypted	packets	or	discover
any	passwords	or	keys.

	
SSL	is	supported	by	all	web	browsers	used	today	which	enables	an
organization’s	employees	to	gain	remote	access	from	anywhere	they	have	an
internet	connection,	without	installing	additional	software	that	the	IT	department
has	to	manage.	SSL	VPNs	are	even	implemented	in	some	recent	versions	of
operating	systems.	For	instance,	in	Windows	7	and	8	you	can	specify	Secure
Sockets	Tunneling	Protocol	(SSTP)	when	configuring	a	new	VPN	connection.
SSTP	sends	traffic	through	an	SSL	tunnel.

	
In	most	cases	when	you	use	an	SSL	VPN	with	your	web	browser,	you	will	visit
a	URL	using	HTTPS	and	get	prompted	for	your	credentials.	After	entering	the
credentials	an	Active	X	or	Java	based	application	will	launch	and	after	a	couple
of	seconds	you	will	be	remotely	connected	to	your	organization’s	environment.
When	you	use	a	SSL	connection	directly	in	the	operating	system	you	can	save
your	credentials	in	the	settings	and	launch	the	VPN	very	easily.	Since	SSL	is
included	in	all	of	the	different	browsers	and	major	operating	systems,	users	will
have	an	easier	time	connecting.	HTTPS	operates	on	TCP	port	443	by	default	so
it	is	probably	already	permitted	through	relevant	firewalls.

	

Chapter	Summary
Authentication	verifies	the	identity	of	the	user	so	that	it	can	determine	if
the	user	is	valid	or	not.	This	is	the	most	fundamental	part	of	network
security	and	it	is	used	in	our	daily	lives.

	
Authorization	is	the	process	of	determining	what	resources	the	user	has	the
right	to	access	after	logging	in.	Authentication	and	authorization	are	very
easily	confused.

	
Accounting	is	used	to	measure	the	user’s	access.	This	could	include	how
often	a	user	accesses	a	certain	resource	or	the	amount	of	data	a	user	has
sent	or	received	during	a	session.	This	information	is	used	to	analyze
trends	and	resource	utilizations.
	
Authentication,	Authorization	and	Accounting	are	also	known	as	the	three-
letter	acronym	AAA.

	
There	are	three	different	forms	of	identifying	a	user	and	they	are:
something	you	know,	something	you	have	and	something	you	are.

	
Centralized	authentication	is	used	to	simplify	management	of	users	and
groups	and	it	also	enables	SSO	(Single-Sign-On).	RADIUS	and
TACACS+	are	two	examples	of	centralized	authentication.

	
SAML	enables	you	to	have	SSO	(Single-Sign-On)	on	multiple	external
sites	through	the	use	of	an	Identity	provider.	SAML	stands	for	Security
Assertion	Markup	Language.

	

Chapter	Review
In	order	to	test	your	knowledge	and	understanding	of	this	chapter,	please	answer
the	following	questions.	You	will	find	the	answers	and	explanations	of	the
questions	at	the	end	of	this	chapter.

	
1.	 Which	of	the	following	correctly	explains	authentication?

	
a.	 Authentication	determines	what	access	a	user	should	have.

	
b.	 Authentication	is	responsible	for	making	sure	a	user	has	the	right

access.
	
c.	 Authentication	verifies	the	identity	of	the	user	so	that	it	can	be

determined	if	you	are	a	valid	or	invalid	user.
	
d.	 Authentication	is	a	security	system	that	handles	all	incoming	request.

	
	

2.	 What	is	multifactor	authentication?
	
a.	 When	a	client	request	goes	through	multiple	authentication	servers.

	
b.	 It	is	multiple	ways	of	identifying	the	user.

	
c.	 It	is	used	when	you	want	to	access	multiple	resources	using	the	same

credentials.
	
d.	 You	use	it	when	multiple	users	have	different	operating	systems	and

they	are	trying	to	access	the	same	resources.
	

3.	 What	is	SAML	(Security	Assertion	Markup	Language)?
	
a.	 SAML	is	used	to	enable	Single-Sign-On	to	multiple	systems/sites

through	the	web	browser.
	

b.	 SAML	is	an	authentication	protocol	created	especially	for	multifactor
authentication.

	
c.	 SAML	is	used	to	enable	Single-Sign-On	to	multiple	systems/sites

directly	on	the	computer.
	
d.	 SAML	is	the	system	that	authorizes	users	after	they	have	been

authenticated.
	

4.	 True	or	false:	Authorization	verifies	a	user’s	identity	based	on	the
credentials	the	user	has	provided.
	
a.	 True

	
b.	 False

	
5.	 Your	company	recently	expanded	and	you	have	opened	up	a	new	branch

office	on	a	different	site.	As	a	network	technician	you	are	now	responsible
for	providing	access	to	the	servers	located	at	the	headquarters	for	the

branch	office	users.
	
In	the	following	scenario,	what	remote	access	technique	is	preferred?
	
a.	 Site-to-site	IP	Sec	VPN

	
b.	 SSL	VPN

	
c.	 Hire	a	dedicated	leased	line	between	the	two	offices

	
d.	 Site-to-site	SSL	VPN

	
6.	 As	an	IT-technician	for	a	large	organization	you	have	to	make	changes	to

the	network	environment	every	day	because	the	R&D	department	is
constantly	implementing	new	features	that	you	have	to	allow	through	the
organization’s	firewall.
	
Which	security	model	is	best	suited	for	your	needs?
	
a.	 Positive	security	model

	
b.	 Negative	security	model

	

Chapter	Review:	Answers
You	will	find	the	answers	to	the	chapter	review	questions	below:

	
1.	 The	correct	answer	is:	C

	
a.	 Authentication	determines	what	access	a	user	should	have.

	
b.	 Authentication	is	responsible	for	making	sure	a	user	has	the	right

access.
-										
c.	 Authentication	verifies	the	identity	of	the	user	so	that	it	can	be

determined	if	you	are	a	valid	or	invalid	user.
	
d.	 Authentication	is	a	security	system	that	handles	all	incoming	request.

	
Authentication	is	the	process	when	the	user	is	prompted	for	credentials.	The
authentication	system	does	not	care	what	resources	you	have	access	to,	it	only
wants	to	know	that	you	are	who	you	claim	to	be.

	
2.	 The	correct	answer	is:	B

	
a.	 When	a	client	request	goes	through	multiple	authentication	servers.

	
b.	 It	is	multiple	ways	of	identifying	the	user.

	
c.	 It	is	used	when	you	want	to	access	multiple	resources	using	the	same

credentials.
	
d.	 You	use	it	when	multiple	users	have	different	operating	systems	and

they	are	trying	to	access	the	same	resources.
	

Multifactor	authentication	is	used	when	you	have	combined	multiple	ways	of
authenticating	a	user.	There	are	currently	three	ways	which	are:	Something	you
know	(password),	something	you	have	(physical	token)	and	something	you	are

(finger	print).
	

3.	 The	correct	answer	is:	A
	
a.	 SAML	is	used	to	enable	Single-Sign-On	to	multiple	systems/sites

through	the	web	browser.
	

b.	 SAML	is	an	authentication	protocol	created	especially	for	multifactor
authentication.

	
c.	 SAML	is	used	to	enable	Single-Sign-On	to	multiple	systems/sites

directly	on	the	computer.
	
d.	 SAML	is	the	system	that	authorizes	users	after	they	have	been

authenticated.

	
SAML	is	a	Single-Sign-On	technology	used	for	web	browsers.	Previously	web
browsers	used	cookies	for	this	but	this	was	only	possible	on	the	intranet.	This
was	not	efficient	because	they	could	not	be	transferred	between	domains.	So
SAML	was	invented	instead.

	
4.	 The	correct	answer	is:	B

	
a.	 True

	
b.	 False

	

Authorization	is	the	process	after	a	user	has	been	identified.	After	the	user	has
been	identified	it	looks	through	its	database	to	determine	what	resources	a	user
should	be	able	to	obtain.
	

5.	 The	correct	answer	is:	A
	
a.	 Site-to-site	IP	Sec	VPN

	
b.	 SSL	VPN

	
c.	 Hire	a	dedicated	leased	line	between	the	headquarters	and	the	branch

office
	
d.	 Site-to-site	SSL	VPN

	

Since	you	are	required	to	provide	access	between	two	remote	sites	the	best
option	is	to	setup	a	Site-to-site	IP	sec	VPN	tunnel	between	the	headquarters	and
the	branch	office.	You	could	also	hire	a	dedicated	leased	line	between	the	HQ
and	the	branch	office	but	this	would	not	be	the	preferred	solution.
	

SSL	VPN	are	not	used	for	Site-to-site	VPN,	they	are	only	used	when	you	need	to
provide	separate	users	with	access	to	resources	located	in	the	office.
	

6.	 The	correct	answer	is:	B
	
a.	 Positive	security	model

	
b.	 Negative	security	model

	

Since	the	environment	is	constantly	changing	the	best	suited	security	model	is
the	negative	security	model.	Policy	rules	are	created	that	will	keep	out	all	known
attacks	which	will	keep	the	network	secure	while	allowing	all	new	traffic
through.

	

12.	Public	Key	Infrastructure	(PKI)
	

How	do	we	know	that	the	file	we	are	sending	to	our	colleague	has	not	been
tampered	with	and	arrives	safely?	How	do	we	know	that	no	one	is	actually
sniffing	the	network	and	downloading	sensitive	data?
	

What	is	Public	Key	Infrastructure?
Public	Key	Infrastructure	(PKI)	was	invented	in	order	to	increase	security.	PKI
is	pretty	complex	and	can	be	hard	for	people	to	grasp	initially;	it	involves
encryption,	digital	signing	and	certificates.	These	are	used	in	technologies	like
SSL	and	VPNs	which	we	have	covered	in	previous	chapters.

	

The	Basics	of	Encryption
Encryption	is	used	to	protect	data	against	unauthorized	people.	This	ensures	that
only	the	intended	recipient	can	read	the	file	or	application	data	that	is	being	sent.
In	order	to	understand	how	encryption	works,	the	terms	used	in	relation	to	it
needs	to	be	explained.

	
When	you	encrypt	data	you	need	two	inputs;	an	algorithm	and	a	key.	The
algorithm	describes	how	the	data	should	be	transformed	into	unreadable	cipher
text	and	how	we	can	convert	it	back	to	its	original	format.	Cipher	text	is	the
result	of	encryption	performed	on	plaintext	using	an	algorithm.	The	key	is	a
piece	of	unique	information	(like	a	password,	certificate	or	shared	secret)	that	is
used	as	an	input	to	the	algorithm	to	be	able	to	create	a	unique	value	that	can	only
be	obtained	by	using	the	correct	algorithm	and	the	key.

	
To	present	an	example,	when	configuring	a	site-to-site	tunnel	you	have	the
possibility	to	use	pre-shared-keys	(a	shared	secret	that	both	routers/firewalls
know	because	it	has	been	configured	on	both	devices)	and	this	works	just	like	a
password.	In	order	to	establish	the	tunnel	both	tunnels	need	to	have	the	same
pre-shared-key	to	be	able	to	encrypt	and	decrypt	the	data	that	travels	over	the
tunnel.	In	this	sense	the	pre-shared-key	is	the	key	and	the	encryption	used	in	the
tunnel,	is	the	algorithm.

	
To	summarize,

	
Unencrypted	data	is	known	as	plain	text
	
The	algorithm	describes	how	you	encrypt	the	data
	
The	key	is	used	to	encrypt	and	decrypt	the	data
	
Encrypted	data	is	known	as	cipher	text

	

When	you	encrypt	a	file	you	can	either	use	symmetric	encryption	or	asymmetric

encryption,	the	difference	being	the	number	of	keys	used.	This	all	depends	on	the
level	of	security	you	need.
	

Symmetric	Encryption
When	you	use	symmetric	encryption	you	use	the	same	key	for	both	encryption
and	decryption.	The	good	thing	about	symmetric	encryption	is	that	in	theory	it	is
very	fast,	but	the	encryption	algorithms	are	not	as	complex	(and	thus	less	secure)
as	those	used	with	asymmetric	encryption.	Therefore	they	are	ideal	for
environments	that	require	speed.

	
Here’s	a	visual	example	of	how	symmetric	encryption	works:

	

	

Note								When	using	symmetric	encryption,	we	use	the	same	key
for	both	encrypting	and	decrypting	the	data.
	

	

The	system	that	encrypts	the	file	generates	a	random	symmetric	key	which	is
defined	by	the	algorithms	(and	some	user	input).	The	algorithm	determines	the
size	of	key	together	with	the	application	using	it.	Once	the	key	is	created,	it	is
used	to	encrypt	the	data.	The	encrypted	file	is	then	made	available	to	the
recipient.	The	key	must	also	be	made	available	to	the	recipient	through	some
secure	method	(not	the	one	used	to	exchange	the	data).	Once	the	user	receives
both	the	encrypted	key	and	file	they	can	then	decrypt	the	file	and	access	the	data.
	

Note								A	pre-shared	key	(PSK)	can	also	be	used	as	a	key	in
symmetric	encryptions.	This	is	a	secret	that	both	systems	know
that	will	enable	both	parties	to	both	encrypt	and	decrypt	the	file.
	

	

The	important	thing	is	that	the	encryption	key	is	transferred	(or	shared)	using	a
secure	channel	between	users	or	end	hosts.	The	encrypted	data	can	be	exchanged
over	an	insecure	network	or	through	an	insecure	method	as	only	those	with	the
key	can	decrypt	it.	The	greatest	security	risk	is	if	the	key	is	intercepted	by	a
malicious	user,	who	can	then	unencrypt	the	file	or	communications	(if	they	can
access	them).
	

Symmetric	Algorithms
The	greatest	benefit	of	symmetric	algorithms	is	the	amount	of	data	it	can	encrypt
in	a	short	period	of	time.	Some	common	symmetric	algorithms	are;

	

Data	Encryption	Standard	(DES)	–	Uses	a	generated	symmetric	key	that
consists	of	56-bits.	This	standard	was	selected	by	the	National	Bureau	of
Standards	as	an	official	Federal	Information	Processing	Standard	(FIPS)
for	the	United	States	in	1976	but	has	now	been	withdrawn.	DES	is
considered	to	be	insecure	for	many	applications	because	the	symmetric	key
is	too	small	(56-bit).
	
3DES	–	An	algorithm	that	is	the	very	similar	to	DES	except	it	is	applied
three	times	to	the	data	payload.	The	payload	is	encrypted	with	key	A,
decrypted	with	key	B	and	then	re-encrypted	with	key	C.	This	method	is
called	Encrypt-Decrypt-Encrypt	cycle	(EDE)	and	is	explained	next:
	

Encrypt	using	first	key	and	plaintext	(non-encrypted	file)	that	produces
the	first	ciphertext.

	
Decrypt	using	the	first	ciphertext	and	second	key	that	produces	a	second
unreadable	ciphertext.
	
Encrypt	using	the	second	ciphertext	and	third	key	to	produce	the	final
ciphertext.

	
It	can	also	be	encrypted	with	only	two	keys.	In	this	case	only	keys	A
and	B	are	used.	It	is	very	important	that	you	use	three	separate	keys,	if
two	of	the	keys	are	the	same	it	will	severely	degrade	security.	3DES	is

three	times	stronger	than	DES	but	also	three	times	slower.
	
Advanced	Encryption	Standard	(AES)	–	An	algorithm	intended	to	be	the
successor	to	3DES	which	uses,	128-bit,	192-bit	and	256-bit	keys	instead	of
a	56-bit	one.	It	uses	the	Rijndael	algorithm	which	makes	it	possible	to
encrypt	data	in	just	one	pass	instead	of	3DES	which	uses	three.	Despite
being	more	secure,	AES	Is	faster	than	3DES.

	

Exam	Tip								You	do	not	need	to	remember	the	different	types	of
algorithms	available	and	their	key	lengths.	But	it	is	important	to
understand	how	PKI	works.

	

Asymmetric	Encryption
Asymmetric	encryption	uses	two	keys	instead	of	one;	these	keys	are	known	as
public	and	private	keys.	This	increases	security	significantly,	but	at	the	cost	of
speed.	The	keys	are	separate	but	mathematically	related.	The	reason	why	this
technology	is	more	secure	is	because	the	private	key	is	only	possessed	by	the
host	that	generated	the	key	pair	(the	private	and	public	key).	The	private	key
never	leaves	the	original	system.	The	public	key	on	the	other	hand	is	distributed
to	other	systems	and	does	not	have	to	be	protected.	This	way,	the	sender	uses	the
public	key	to	encrypt	files	that	is	destined	for	the	system	that	holds	the	private
key	(only	the	system	holding	the	private	key	can	decrypt	the	data).

	
As	mentioned	before,	asymmetric	encryption	uses	two	keys.	One	key	is	used	for
encrypting	the	data	and	the	other	is	used	for	decryption.	The	algorithms	used	in
asymmetric	encryption	are	more	complex	which	causes	the	encryption	and
decryption	process	to	take	much	longer.	Things	change	over	time	and	vendor
focus	and	new	technology	can	change	the	picture	but	in	theory	symmetric
algorithms	can	be	100	to	10000	times	faster	than	asymmetric	ones.

	
Asymmetric	Encryption	is	explained	in	the	following	illustration:

	

	
1.	 The	sender	retrieves	the	recipient’s	public	key.	This	can	be	sent	from	either

the	recipient	itself	or	it	can	be	obtained	from	a	server.	This	key	really	can
be	public;	there’s	no	need	to	protect	it.
	

2.	 The	document	is	then	encrypted	using	the	asymmetric	algorithm	and	the
recipient’s	public	key.	This	transforms	the	original	plain-text	into
unreadable	cipher-text.
	

3.	 The	encrypted	cipher-text	is	sent	to	the	recipient	and	since	asymmetric
algorithm	is	used	there	is	no	need	to	send	the	encryption	key	too.	The
recipient	will	use	its	own	private	key	to	decrypt	the	text.
	

4.	 The	recipient	decrypts	the	document	using	the	private	key	which
transforms	the	encrypted	text	into	the	original	document	(the	plain-text).

	

Note								Documents	are	used	as	an	example	of	encryption.	You
can	apply	encryption	to	pretty	much	any	data	type	including
documents,	emails	and	technologies	like	FTPS,	HTTPS	and	SSH.

	
Since	asymmetric	is	in	theory	so	much	slower	than	symmetric	encryption	it	is
very	uncommon	to	use	asymmetric	encryption	for	the	data	payload.	Most	of	the
time	a	combination	of	both	asymmetric	and	symmetric	encryption	is	used.	You
create	a	symmetric	key	which	you	use	to	encrypt	the	document	and	then	use	the
recipient’s	public	key	to	encrypt	the	symmetric	key.	Both	the	encrypted	file	and
the	encrypted	symmetric	key	are	sent	to	the	recipient.

	
Since	the	recipient	has	the	private	key,	it	will	be	able	to	decrypt	the	symmetric
key.	The	symmetric	key	will	then	be	used	to	decrypt	the	encrypted	document.
Using	this	method	we	can	use,	in	theory,	the	faster	symmetric	algorithm	on	the
data	and	still	have	high	security	because	we	use	asymmetric	encryption	on	the
symmetric	key.	The	following	illustration	explains	this	concept:

	

	
1.	 The	sender	obtains	the	recipients	public	key.

	
2.	 The	sender	generates	a	symmetric	key	and	uses	this	key	to	encrypt	the

document.
	

3.	 The	symmetric	key	is	encrypted	using	the	public	key	obtained	earlier.	This
is	done	to	secure	the	symmetric	key	during	transfer.
	

4.	 The	encrypted	document	and	the	encrypted	symmetric	key	are	transferred
to	the	recipient.
	

5.	 The	recipient	uses	its	private	key	to	decrypt	the	encrypted	symmetric	key.
	

6.	 Finally	the	encrypted	document	is	decrypted	using	the	symmetric	key
which	transforms	it	to	the	original	document.

	

Asymmetric	Algorithms
The	most	common	asymmetric	algorithms	used	are;

	

Diffie-Hellman	(DH)	Key	Agreement:	This	algorithm	does	not	rely	on
public	and	private	keys	for	encryption.	Instead	it	uses	a	mathematical
function	that	helps	generate	a	shared	secret	between	two	parties.
Understanding	how	this	algorithm	works	is	beyond	the	scope	of	the	exam
and	thus	this	book.

	
Rivest	Shamir	Adleman	(RSA):	An	algorithm	based	on	a	series	of
modular	multiplications	that	can	be	used	for	both	encrypting	and	signing.
You	can	control	how	secure	this	encryption	is	by	using	different	key
lengths.	For	instance	you	can	use	a	128	bit	key	or	you	can	use	a	256	bit
key.	Remember,	longer	keys	(normally)	result	in	a	slower	encryption	and
signing	process	but	higher	security.

	
	

Digital	Signature	Algorithm	(DSA):	This	algorithm	uses	a	series	of
calculations	based	on	a	selected	prime	number	and	it	is	only	used	for
digital	signing.	The	maximum	key	size	used	to	be	1024	bits	but	longer	key
sizes	are	now	supported.	Digital	Signing	will	be	covered	in	greater	detail
later	in	this	chapter.

	

Asymmetric	Signing
This	technology	is	used	when	there	is	a	need	to	protect	data	from	modification
and	confirm	the	identity	of	the	sender.	To	do	this	the	asymmetric	encryption
process	is	reversed.	Instead	of	using	the	public	key	to	encrypt	the	file,	the	private
key	is	used	instead.	Since	the	sender	is	the	only	one	with	the	private	key,	we	can
ensure	that	the	file	is	coming	from	the	sender.	If	the	private	key	is	jeopardized	or
stolen,	the	whole	PKI	structure	fails.	That	is	why	it	is	very	important	to	keep
private	keys	safe.

	
The	asymmetric	signing	process	is	illustrated	next:

	

	
1.	 The	sender	will	encrypt	the	document	using	its	own	private	key.	The

private	key	is	only	available	to	the	sender	so	this	ensures	that	the	document
comes	from	the	sender.
	

2.	 The	encrypted	document	is	sent	to	the	recipient.
	

3.	 In	order	for	the	recipient	to	decrypt	the	document,	it	needs	to	download	the
sender’s	public	key.
	

4.	 Finally	the	recipient	will	decrypt	the	document	using	the	sender’s	public
key	thus,	confirming	that	the	sender	is	who	he	claims	to	be.

	

Since	anyone	can	get	a	hold	of	the	public	key,	anyone	will	be	able	to	decrypt	the
file.	But	that	is	not	the	purpose	for	Asymmetric	Signing.	The	purpose	is	to
confirm	the	identity	of	the	sender	and	make	sure	it’s	correct.
	

Note								Remember	that	with	Asymmetric	Signing	you	do	not
encrypt	using	the	public	key,	you	use	the	private	key	in	order	to
ensure	that	the	file/document	is	coming	from	the	original	sender
since	it’s	the	only	one	containing	the	private	key.

	

The	Hash	Process
A	hash	algorithm	takes	a	plaintext	document	and	produces	a	mathematical	result.
This	mathematical	output	is	referred	to	as	a	hash	value,	message	digest	or	digest.
If	a	single	character	is	changed	in	the	plaintext	document,	the	mathematical
result	will	not	be	the	same.	We	use	this	to	determine	that	the	original	file	has	not
been	modified	in	transit.

	

Hash	Algorithms
These	are	the	most	common	hashing	algorithms	used	today;

	

Message	Digest	5	(MD5)	–	This	algorithm	is	used	in	many	security
applications.	It	is	used	to	produce	a	128	bit	hash	value	of	messages	of	any
size.	It	was	designed	by	Ron	Rivest	in	1991.

	
Secure	Hash	Algorithm	(SHA-1)	–	This	is	an	algorithm	designed	by	United
States	National	Security	Agency	and	was	first	published	1995	and
produces	160bit	hash	value.	It	is	widely	used	in	many	security	applications
and	protocols.	It	is	considered	to	be	slower	than	MD5	but	it	is	harder	to
find	two	data	inputs	that	result	in	the	same	hash	value.	It	has	been
upgraded	several	times	and	SHA-3	is	currently	the	latest	version	that	was
released	in	2012.	SHA-3	is	superior	to	SHA-1	and	offers	greater	security.

	

Digital	Signing
The	main	purpose	of	encryption	is	to	prevent	data	from	being	modified,	ensuring
the	source	of	the	data	and	keeping	the	data	secret.	This	is	also	known	as:

	

Integrity: If	someone	was	able	to	capture	the	information,	even	if	they
could	not	understand	the	data	they	could	still	change	the
bits	and	alter	the	data.	That	is	why	there	is	a	need	to
recognize	what	is	happening	and	refuse	the	information.

Authentication: You	do	not	want	to	send	critical	and	classified	information
to	the	wrong	host;	therefore	it	is	essential	that	the	recipient
is	who	he	claims	to	be.

Confidentiality: Keep	the	data	secure	so	that	no	man	in	the	middle	can
obtain	the	information.	If	someone	was	able	to	capture	the
data,	it	would	appear	to	be	meaningless	to	the	thief.

	 	
	

Even	though	encryption	can	provide	protection	for	the	data	and	prevent	it	from
being	altered;	only	digital	signing	has	the	ability	to	ensure	the	source	of	the	data.
Digital	signing	also	provides	protection	against	data	modification.	In	order	to
digital	sign	a	document	or	application	we	need	to	use	a	digital	signature.
	

In	short,	a	Digital	Signature	is	the	same	as	asymmetric	signing.	In	other	words,
the	use	of	a	private	key	to	digital	sign	a	file,	application	or	even	a	hash	value.
	

Summary:
	
1.	 The	digital	signing	process	uses	a	hash	algorithm	to	determine	if	the	data

has	been	modified.
	

2.	 The	digital	signing	process	applies	a	digital	signature	(the	private	key)	to
the	message	digest	that	identifies	who	actually	signed	the	data.	Since	the
signer	is	the	only	one	with	the	private	key	it	means	that	you	can	be	certain
the	data	comes	from	them.

	
One	real-life	example	of	digital	signing	is	digitally	signed	drivers.	This	will
ensure	that	the	device	drivers	you	install	on	your	computer	come	from	the
manufacturer	and	not	from	an	unknown	publisher.	Hashing	is	usually	also	used
together	with	the	digital	signature	to	ensure	that	the	device	driver	has	not	been
modified.	Digitally	signing	device	drivers	are	entirely	up	to	the	manufacturer.	If
your	operating	system	detects	an	unsigned	driver,	it	will	most	likely	warn	you
about	it	as	it	is	considered	a	security	risk.

	

Combining	Asymmetric	Signing	&	Hash	Algorithms
When	working	with	digital	signing,	you	can	combine	both	asymmetric	signing
and	hash	algorithms.	The	hash	algorithms	make	sure	that	the	data	has	not	been
modified	and	the	asymmetric	signing	provides	proof	that	the	hash	value	was
created	by	the	sender.	Here’s	an	illustration	of	this:

	

	
1.	 The	sender	takes	the	original	document	and	runs	it	through	a	hash

algorithm.	This	creates	a	message	digest.
	

2.	 Then	the	sender	encrypts	this	message	digest	with	its	own	private	key.
	

3.	 Then	both	the	orignal	document	and	the	encrypted	digest	are	sent	to	the
recipient.
	

4.	 The	recipient	will	download	(or	already	have)	the	sender’s	public	key	and
decipher	the	message	digest.
	

5.	 The	recipient	will	also	run	the	original	document	through	the	same	hash
algorithm	that	the	sender	did,	this	will	create	another	message	digest.
	

6.	 In	order	to	verify	that	the	document	has	not	been	modified	during	transit,
the	recipient	will	compare	both	digests	to	see	if	they	are	both	the	same.

	

Note								With	digital	signing	no	encryption	is	used	on	the
original	document.	The	original	document	can	be	modified	but
this	will	be	proven	when	the	message	digest	is	compared.

	

Certificate	Chains	and	Certificate	Authorities
Now	that	we	have	talked	about	all	the	different	types	of	encryption	technologies,
hashing	algorithms	and	so	forth	let’s	consider	some	real	life	scenarios.	Many	of
you	have	probably	visited	your	bank	online	or	bought	something	from	Amazon
or	eBay.	When	you	are	accessing	high	security	sites	which	involve	payment	or
some	sort	of	confidentiality	requirement,	you	will	most	likely	encounter	a
website	protected	by	HTTPS.

	
HTTPS	provides	confidentiality,	integrity	and	authentication.	It	achieves	this	by
using	a	SSL/TLS	certificate.	A	certificate	is	a	file	that	contains	information	such
as	e-mail	address,	owner's	name,	certificate	usage,	duration	of	validity	and	a	lot
of	others.	It	also	contains	the	certificate	ID	of	the	entity	that	signed	this
information	and	the	public	certificate.	The	public	certificate	is	the	same	as	the
public	key.	The	certificate	itself	is	signed	by	a	hashing	algorithm	to	ensure	that	it
has	not	been	modified.

	
This	certificate	is	created	by	a	root	certificate	authority	(CA),	which	can	be
compared	to	the	entity	that	issues	your	passport.	A	Certificate	Authority	is	a	very
important	part	of	PKI	and	it	has	several	functions.	Here	are	some	examples;

	
Verify	the	identity	of	the	requestor:	Before	the	CA	will	issue	a
certificate;	it	must	ensure	the	identity	of	the	requestor.
	
Issue	certificates	to	the	requestor:	When	the	administrator	has	validated
the	identity	of	the	requestor;	the	next	step	is	to	issue	the	certificate.	This
could	be	a	user,	a	computer,	network	device	or	service	certificate.	It	is
important	to	choose	the	right	purpose	for	the	certificate.	Depending	on
what	you	choose,	the	certificate	will	have	a	different	set	of	options.	A
HTTPS	certificate	is	very	different	from	a	IPsec	certificate
	
Manage	certificate	revocation:	The	CA	also	keeps	track	of	certificates
that	have	been	revoked.	They	could	be	revoked	for	several	reasons	which
will	be	discussed	in	next	section	of	this	chapter.	The	CA	publically
publishes	something	that	is	called	a	certificate	revocation	list.

	
Certificates	can	represent	users,	computers,	network	devices	or	services	and
every	one	of	them	has	a	public	key	and	a	private	key	(public	and	private
certificate).	Since	we	are	using	two	keys,	this	means	that	we	are	using
asymmetric	encryption.

	
Since	the	CA	is	managed	by	administrators,	the	administrator	needs	to	verify	the
identity	of	the	requestor	before	granting	a	certificate.	There	are	several	different
ways	of	identifying	the	requestor	and	it	all	depends	on	what	type	of	IT-security
policy	your	company	uses.	Some	examples	of	identifying	the	requestor	are
driver’s	license,	proof	of	address,	company	or	logon	information.	Some
companies	even	involve	a	face-to-face	meeting.	When	the	identity	has	been
confirmed	the	administrator	can	issue	a	certificate	to	the	requestor	and	signs	it
with	the	CA’s	own	private	key.	This	is	done	to	protect	the	certificate	from	any
changes.	If	you	were	to	change	anything	in	the	certificate	it	would	fail	the	digital
signature	check	and	be	marked	as	invalid.

	
Here’s	an	example	of	the	www.google.se	certificate	information	that	I	get	when
accessing	Google	Sweden.

http://www.google.se

Certificate	Revocation	Lists	(CRLs)
Sometimes	the	CA	must	revoke	a	certificate	before	the	validity	period	expires.
The	CA	stores	and	publishes	this	information	in	a	certificate	revocation	list	or
CRL.

	

The	Different	Revocations
Certificates	can	be	revoked	for	a	number	of	reasons;
	

Key	Compromise:	The	private	key	of	the	certificate	has	been
compromised.	This	can	happen	if	the	private	key	related	to	the	certificate
has	been	stolen	or	the	hardware	that	contains	the	private	key	has	been
stolen.
	
CA	compromise:	The	CA	private	key	has	been	compromised.	The	same
happens	with	this	key,	either	the	hardware	has	been	stolen	or	the	private
key	itself	has	been	stolen.
	
Certification	Hold:	Indicates	that	the	certificate	has	been	temporarily
revoked.	This	can	occur	when	an	employee	in	an	organization	takes	a	leave
of	absence	for	some	reason	(maternity	leave	for	instance).
	
Affiliation	Changed:	This	is	used	when	the	subject	(typically	a	user)	of
the	certificate	has	changed.	This	may	be	when	a	user	has	left	the
organization.	This	is	indicated	in	the	DN	attribute	of	the	certificate.	In
other	words,	the	user	has	been	fired	or	quit	their	job	and	therefore	the
certificate	has	to	be	terminated.
	
Cessation	of	Operation:	The	certificate’s	subject	has	been
decommissioned.	This	can	happen	because	the	server	which	holds	the
certificate	has	been	replaced	by	another	one	with	a	different	name.
	
Superseded:	The	certificate	has	been	replaced	with	a	new	certificate.	This
can	occur	when	some	of	the	options	in	the	certificate	have	been	changed.
	
Remove	From	CRL:	A	certificate	has	been	unrevoked	and	taken	off	the

CRL.

	

Further	Reading
If	you’d	like	to	explore	this	subject	further,	I’d	highly	recommend	the	Crypto
101	book	by	Laurens	Van	Houtven	available	here:	https://www.crypto101.io.

	

https://www.crypto101.io

Chapter	Summary
Encryption	is	used	to	make	data	unreadable	against	unauthorized	people.
This	ensures	that	only	the	intended	recipient	gets	access	to	the	file	or
application	data	that	is	sent.	There	are	both	symmetric	encryptions	and
asymmetric	encryptions.

	
Some	symmetric	encryption	algorithms	are	DES,	3DES	and	Advanced
Encryption	Standard	(AES).

	
Diffie-Hellman	key	Agreement,	Rivest	Shamir	Adleman	(RSA)	or	Digital
Signature	Algorithm	are	examples	of	asymmetric	algorithms.

	
Asymmetric	signing	is	used	to	protect	data	from	modification	and	confirm
the	identity	of	the	sender

	
A	Certificate	Authority	is	a	very	important	part	of	PKI	and	it	is	responsible
for	verifying	the	identity	of	a	certificate	requestor,	issue	certificates	to	the
requestor	and	manage	certificate	revocations.	The	certificate	revocations
are	stored	in	the	CRL	(Certificate	Revocation	List)

	

Chapter	Review
In	order	to	test	your	knowledge	and	understanding	of	this	chapter,	please	answer
the	following	questions.	You	will	find	the	answers	and	explanations	of	the
questions	at	the	end	of	this	chapter.

	
1.	 What	is	the	advantage	of	symmetric	encryption	compared	to	asymmetric

encryption?
	
a.	 Symmetric	encryption	is	faster	than	asymmetric	encryption.

	
b.	 Symmetric	encryption	is	safer	than	asymmetric	encryption.

	
c.	 Symmetric	encryption	is	easier	to	setup	than	asymmetric	encryption.

	
d.	 Symmetric	encryption	requires	less	hardware	than	asymmetric

encryption.
	

2.	 Which	of	the	following	are	symmetric	algorithms?
	
a.	 DES

	
b.	 AES

	
c.	 Diffie-Hellman	Key	Agreement

	
d.	 MD5

	
3.	 Which	of	the	following	are	asymmetric	algorithms?

	
a.	 3DES

	
b.	 Diffie-Hellman	Key	Agreement

	
c.	 DSA

	
d.	 SHA1

	
4.	 True	or	false:	A	Certificate	Authority	issues	certificates	to	the	requestor

	
a.	 True

	
b.	 False

	

Chapter	Review:	Answers
You	will	find	the	answers	to	the	chapter	review	questions	below:

	
1.	 The	correct	answer	is:	A

	
a.	 Symmetric	encryption	is	faster	than	asymmetric	encryption.
b.	 Symmetric	encryption	is	safer	than	asymmetric	encryption.
c.	 Symmetric	encryption	is	easier	to	setup	than	asymmetric	encryption.
d.	 Symmetric	encryption	requires	less	hardware	than	asymmetric

encryption.

The	main	advantage	of	symmetric	encryptions	is	the	speed	of	it.	Symmetric
algorithms	are	in	theory	at	least	100	times	faster	than	asymmetric	encryption	in
software-based	encryptions	and	10,000	times	faster	in	hardware-based
encryptions.	But	they	are	less	secure	because	they	only	use	one	key	for	both
encryption	and	decryption.

	
2.	 The	correct	answers	are:	A	and	B

	
a.	 DES

	
b.	 AES

	
c.	 Diffie-Hellman	Key	Agreement

	
d.	 MD5

	
3.	 The	correct	answer	is:	B	and	C

	
a.	 3DES

	
b.	 Diffie-Hellman	Key	Agreement

	
c.	 DSA

	
d.	 SHA1

	
4.	 The	correct	answer	is:	A

	
a.	 True

	
b.	 False

13.	Application	Delivery	Platforms
	

In	this	chapter	we’ll	cover	the	basics	around	F5’s	application	delivery	hardware,
its	virtualised	software-only	equivalent,	the	differences	between	the	two	and	the
drawbacks	and	benefits	of	each.	Additionally	we’ll	explore	some	more	advanced
protocol	specific	features	for	TCP	and	HTTP	now	that	you	understand	more
about	these	protocols	and	their	relation	to	basic	load	balancing	and	application
delivery.
	

BIG-IP	Hardware
BIG-IP	Application	switch	hardware	comes	in	a	wide	range	of	fixed	and
modular	models.	Both	the	physical	hardware	and	the	Virtual	Edition	are
considered	a	form	of	application	delivery	platform;	in	other	words,	they	run
TMOS.	I’ll	summarise	the	differences	between	the	hardware	and	virtualised
software	forms	shortly	but	it’s	worth	exploring	the	benefits	and	drawbacks	of
dedicated	hardware	and	related	design	considerations	here	first.
	
Hardware	provides	superior	performance	and	throughput	using	Field-
Programmable	Gate	Array	(FPGA)	circuitry,	specialised	high	performance
network	interfaces	and	optimised	data	paths.	Further	benefits	are	gained	from	the
inclusion	of	additional	dedicated	hardware	for	SSL	processing	(all	models)	and
compression	processing	(higher	end	models	only)	which	provide	much	higher
performance	than	commodity	processors.	Due	to	this	higher	performance	the
number	of	TMOS	modules	you	can	install	on	an	appliance	is	also	typically	quite
high,	which	lends	itself	well	to	functional	consolidation.
	
Clearly	more	suited	to	high	workloads,	hardware	appliances	are	therefore
typically	placed	in	a	logically	central	position	in	the	network	to	maximise	their
benefits	and	ensure	the	maximum	amount	of	traffic	is	easily	processed	through
them.	The	built-in	always	on	management	(AOM)	subsystem	is	a	useful
inclusion	and	vendor	support	is	also	simplified	as	both	the	hardware	and
software	are	supported	and	designed	by	the	same	vendor.
	
Of	course,	for	all	these	benefits	there	are	some	downsides,	the	primary	ones
being	cost	and	a	lack	of	flexibility.	The	hardware	(and	related	support)	is
expensive,	however,	make	good	use	of	their	high	performance	and	capacity	and
the	cost	is	low	compared	to	their	true	value.	This	is	a	primary	design
consideration,	the	higher	the	throughput	(within	suitable	limits)	the	greater	the
return	on	your	investment.
	
Moving	to	the	second	and	related	drawback,	with	the	exception	of	VIPRION,
hardware	appliances	in	general	simply	don’t	scale.	If	you	need	to	do	more	than
your	current	device	has	capacity	for	you	have	to	(rip	and)	replace	it	with	a	larger
device.	Equally,	future	(estimated)	capacity	requirements	must	be	incorporated

in	the	original	purchase,	which	may	mean	the	hardware	is	not	used	to	anything
like	its	full	capacity	for	a	significant	time.
	
You	don’t	need	to	know	this	for	the	exam	but,	if	you’re	interested,	all	physical
BIG-IP	platforms	(with	the	exception	of	VIPRION	systems	detailed	in	the	next
section)	have	a	minimum	specification	of;
	

LCD	Panel	&	Physical	Controls
	
Intel	dual	core	CPU
	
Dual	power	supply	capable	(AC	and	DC)
	
Four	Gigabit	Ethernet	interfaces
	
Front	mounted	LCD	panel
	
Dedicated	management	network	interface
	
Serial	console	interface
	
Failover/HA	serial	interface
	
One	Rack	Unit	(RU)	height
	
Front	to	back	airflow
	
Software	HTTP	compression
	
Hardware	SSL	encryption	via	'Cryogen'	card
	
4Gb	RAM
	
500Gb	HDD
	
Up	to	5,000	1k	SSL	transactions	per	second	(TPS)	[reduce	by	80%	for	2k

keys]
	
Up	to	1Gbps	Layer	four	and	layer	seven	throughput
	
Up	to	1Gbps	Bulk	encryption
	
Up	to	100,000	Layer	seven	requests	per	second
	
Up	to	60,000	Layer	four	connections	per	second

	
Specifications	increase	up	to	the	following	for	the	higher	end	models	(excluding
the	VIPRION	platforms	discussed	shortly);
	

Intel	12	core	CPUs
	
40GbE	Fibre	interfaces
	
Three	RU
	
Hardware	compression	(up	to	40Gbps)
	
FPGA	Acceleration
	
128Gb	RAM
	
Dual	10,000RPM	1Tb	HHDs	with	RAID	(SSDs	are	an	option)
	
Up	to	240,000	2k	SSL	transactions	per	second	(TPS)
	
Up	to	84Gbps	layer	four	throughput
	
Up	to	40Gbps	layer	seven	throughput
	
Up	to	40Gbps	Bulk	encryption
	
Up	to	4,000,000	Layer	seven	requests	per	second

The	only	hot	swappable	components	are	the	power	supplies	(assuming	two	are
installed),	SFP	network	interfaces	and	fan	tray	(in	some	models	only).	Hard
disks	are	not	hot	swappable	even	on	models	that	support	RAID.	FIPS	Compliant
and	Turbo	SSL	versions	of	some	models	are	also	available.
	
VIPRION
VIPRION	is	F5	Networks’	high	density	hardware	consolidation	platform;	the
Cisco	Catalyst	6500	of	the	BIG-IP	range	if	you	will.	The	three	VIPRION	models
are	modular	chassis	with	capacity	for	up	to	eight	hot-swappable	blade	modules,
all	featuring	hardware	compression.	The	larger	16	rack	unit	(RU)	high	4800	can
accommodate	dual	hex	core	CPU	full-width	blades,	the	smaller	4RU	2400	holds
single	quad	core	CPU	half-width	blades.
	
The	features	and	benefits	of	these	chassis	are	similar	to	those	of	other	modular,
expandable	network	devices;
	

Hot-swappable	blades,	multiple	power	supplies	and	field	replaceable
components	increase	uptime	and	provide	a	high	level	of	redundancy
	
Consolidation	of	multiple	devices	in	a	high	density	form	factor	reduces
and/or	fixes	hardware,	environmental,	operational	and	management	costs
	
High	interface	density	and	capacity
	
Non-disruptive	capacity	scaling
	
High	maximum	capacity
	
Fewer	points	of	administration	and	monitoring
	
Easy	expansion	capabilities	(aka	vertical	scaling	or	scale	up)

	
You	don’t	need	to	know	this	for	the	exam	but,	if	you’re	interested,	the	technical
highlights	of	the	VIPRION	platforms	include;
	

Load	is	dynamically	shared	across	all	available	blades
	
All	physical	interfaces	on	all	blades	are	fully	meshed	using	high-speed
bridge	Field	Programmable	Gate	Arrays	(FPGAs)

	
The	entire	system	is	managed	through	a	single	interface

	
Everything	from	firmware,	software	and	configuration	settings	is
automatically	duplicated	from	the	primary	blade	to	every	other	blade

	
The	SuperVIP	feature	allows	a	VIP	to	span	multiple	blades

	
vCMP	–	A	hypervisor	allowing	for	multiple	ADC	guest	instances

	
CMP	-	multicore	and	multiple	processors	(not	VIPRION	specific)

	
Device	Service	Clustering	(DSC)	support	provides	horizontal	clustering
with	any	mix	of	physical,	modular	or	virtual	devices	(not	VIPRION
specific)

	
ScaleN	support

	
NEBS	Certification

	
96Gb	RAM

	
40Gb	Ethernet	interfaces

	
Up	to	30,000	2k	SSL	transactions	per	second	(TPS)

	
Up	to	80Gbps	layer	four	throughput	per	second,	per	blade

	
Up	to	40Gbps	layer	seven	throughput	per	second,	per	blade

	
Up	to	20Gbps	bulk	encryption	per	blade

	
Up	to	2,500,000	Layer	seven	requests	per	second,	per	blade

	
Up	to	1,400,000	Layer	four	connections	per	second,	per	blade

	
Up	to	20Gb	hardware	compression	per	blade

	

BIG-IP	Virtual	Edition	(VE)
LTM	Is	one	of	many	modules	supported	by	BIG-IP	Virtual	Edition,	the	others
are;	Access	Policy	Manager,	Application	Security	Manager,	Edge	Gateway,
Global	Traffic	Manager,	WebAccelerator	and	WAN	Optimization	Manager.
	
LTM	was	the	first	TMOS	module	to	be	supported	by	VE	with	the	introduction	of
TMOS	v10.1.	There	is	a	maximum	throughput	restriction	of	1Gbps	throughput
but	regardless,	for	smaller	deployments,	VE	is	a	very	cost	effective	option.	Note
v11.3	vastly	improved	the	Virtual	Edition,	v11.4	adds	a	5Gbps	throughput
option	and	v11.5	a	10Gbps	option.
	
The	Lab	edition	is	a	very	cheap	(now	only	$95	or	so),	very	bandwidth	limited
(10Mb)	version	highly	suited	to	test	and	development	environments	and	includes
LTM,	GTM,	APM	(10	user)	AFM,	ASM,	AVR,	PSM,	WAM	and	WOM.

	
Mixed	platforms	(hardware/VE)	are	not	supported	for	some	HA	features	but	this
has	improved	greatly	in	v11.4.

	
There	are	FIPS	options	for	VE	but	these	require	an	external,	dedicated	network
HSM	appliance	of	some	kind.

	
I’ll	summarise	the	differences	between	the	hardware	and	virtualised	software
forms	shortly	but	it’s	worth	exploring	the	benefits	and	drawbacks	of	the	virtual
edition	and	related	design	considerations	here	first.	Keep	in	mind	VE
performance	is	highly	dependent	on	the	host	hardware	and	hypervisor	software
used.
	
Virtual	Edition	is	available	at	lower	cost	to	hardware	and	a	wide	variety	of
throughput	levels,	which	provides	licensing	flexibility	and	the	ability	to	use	a
pay	as	you	grow	model.	You	also	benefit	from	the	various	advantages	of	using
virtualisation	in	general.	Of	course,	you	lose	the	performance	gains	of	hardware
acceleration	(particularly	for	SSL)	but	you	don’t	have	to	initially	over-specify
hardware	to	accommodate	future	growth.

	
Potentially	poor	SSL	performance	is	slowly	being	eliminated	with	recent
advances	and	contemporary	features	now	available	with	commodity	Intel
processors.	It’s	argued	that	network	performance	is	a	bottleneck	introduced	by
most	hypervisors	and	that’s	probably	true	at	present	but	I	don’t	see	this	being	an
issue	for	too	much	longer	as	the	vendors	focus	on	it	and	even	now	this	is	only	an
issue	of	your	traffic	profile	includes	a	large	number	of	short	lived	connections.

	
The	hypervisors	supported	are;
	

Citrix	XenServer	(v5.6	sp2	and	6.0)
	
Microsoft	Hyper-V
	
Windows	2008	R2)	(Fully	supported	in	v11.3)
	
VMWare	vCloud	Director	(v1.5)
	
VMWare	ESX/ESXi/vSphere	(v4.0	to	v5.1	inclusive)
	
KVM	(From	v11.3)

	
BIG-IP	Features	not	available	in	the	Virtual	Edition	include;
	

CMP	(until	v11.3)
	
Spanning	Tree	Protocols	(vSwitches	don’t	run	STP;	interestingly	it’s
also	not	supported	on	the	2000s,	2200s,	4000s	or	4200v	hardware
platforms)

	
Link	Aggregation	Control	Protocol	(LACP)	–	but	Trunking	is	still
available

	
The	hard-wired	failover	functionality	and	interface

	

Federal	Information	Processing	Standards	(FIPS)	140-2	compliance
(specific	hardware	is	required)

	
Interface	mirroring

	
The	Serial	console	interface

	
Always	On	Management	(AOM)

	
Use	of	more	than	4Gb	of	memory	(until	v11.3)

	
Throughput	of	more	than	1Gb	(until	v11.4)

	
There	are	downgrade	restrictions	depending	on	your	hypervisor.

	
The	Link	Controller	(LC)	module

	
Advanced	SSL	functions

	
Advanced	TCP	profile	settings

	

Virtual	Edition	vs.	Hardware
With	the	increasing	use	of	virtualisation	and	cloud	computing	as	well	as	the	ever
decreasing	cost	and	increasing	power	of	commodity	servers	and	their	processors,
the	argument	for	using	customised	hardware	such	as	BIG-IP	application
switches	grows	ever	weaker	I	believe.	Unlike	some	other	vendors	who	continue
to	impose	unnecessary	restrictions	on	their	virtual	products	in	order	to	protect
their	hardware	sales,	F5	have	shown	they	have	no	such	issues.

	
The	benefits	and	drawbacks	of	each	form	of	application	delivery	platform	are	as
follows;

Hardware	Appliance
	

Benefit Drawback

Customised,	task	specific	hardware Fixed	number	of	network	interfaces

Expensive,	does	not	scale	up	without
replacement	(bar	VIPRION).
Future	capacity	requirements	must	be
incorporated	now.

SSL	Hardware	offload	and	higher
maximum	throughput
Compression	hardware	offload
Layer	4	packet	offload,	hardware
acceleration
Full	module	support
FIPS	support
Serial,	hard-wired	failover
Holistic	support	–	simplicity
LACP	support
CMP
Spanning	Tree	Protocols
High	performance	even	with	a	high
number	of	short	lived	connections
High	maximum	throughput	(less	of	a
benefit	with	later	TMOS	VE
versions)
May	match	the	production Very	expensive	for	testing	and

implementation development	environments

Multiple	subsystems Higher	complexity,	greater	knowledge
required

	

Virtual	Edition	on	Generic	Server	Hardware
	

Unlimited	number	of	network
interfaces Hardware	is	not	task	specific

Cheaper
Scales	well
Flexible

No	SSL	Hardware	offload,	greater
CPU	resource	use	and	lower	maximum
throughput
No	Compression	hardware	offload,
greater	CPU	resource	use
No	layer	4	Packet	offload	or	hardware
acceleration,	greater	CPU	resource	use
Lower	maximum	throughput	(less	of
an	issue	with	later	TMOS	versions)

Can	run	on	commodity	server
hardware

Hardware	is	not	supported	by	the
software	vendor

Low	costs	suitable	for	testing	and
development	environments

May	not	match	the	production
environment

Good	hypervisor	support Possible	poor	performance	with	a	high
number	of	short	lived	connections

	
	

TCP	Optimisation
TCP/IP	v4	is	ancient,	seriously,	the	original	TCP	protocol	specification:	RFC793
was	published	in	1981,	over	30	years	ago.	Of	course,	the	only	way	TCP	has
remained	relevant	and	useful	over	those	years	and	to	this	day,	is	through
constant	evolution	through	additions	and	modifications	to	the	protocol.	It’s	hard
to	count	how	many	there	have	been	but	it’s	in	excess	of	100	and	a	fair	number	of
these	are	focussed	on	optimising	performance	and	increasing	throughput.
	

Note	TCP	v6	really	only	solves	one	problem	with	v4,	by	increasing
the	size	of	the	address	pool	significantly.

	
In	addition	the	highly	tuned	TMOS	TCP/IP	stacks	dynamically	tune	each
connection	on	either	side	of	the	proxy	to	achieve	the	best	possible	performance.
You	could	have	a	LAN	connected	server	on	one	side	and	a	client	connecting
over	a	slow	WAN	on	the	other	and	an	F5	will	dynamically	manage	and	maintain
separate	TCP	parameters	and	options	for	each	to	get	the	highest	possible
performance	and	throughput.	Whilst	mostly	applicable	to	the	Full	Application
Proxy	described	earlier	(and	another	example	of	its	benefits)	some	TCP
optimisations	are	still	available	with	the	Packet	Based	Proxy.
	

Note	that	even	though	using	the	Packet	Based	Proxy	means	you
can’t	take	advantage	of	most	of	these	optimisations,	the	hardware
acceleration	and	resulting	performance	that’s	possible	instead	can
make	up	for	this.

	
If	you’re	interested,	these	are	some	of	the	open	standard	TCP	optimisations
TMOS	supports;
	

Nagle’s	Algorithm	(RFC896)
	
Delayed	Acknowledgements	(RFC1122)
	
Extensions	for	High	Performance;	TimeStamps	and	Windows	Scaling

https://tools.ietf.org/html/rfc793
http://www.rfc-editor.org/rfc/rfc896.txt
http://www.rfc-editor.org/rfc/rfc1122.txt

(RFC1323)
	
Selective	Acknowledgements	(RFC2018)
	
Slow	Start	with	Congestion	Avoidance,	(RFC2581)
	
Limited	and	Fast	Retransmits,	(RFC3042	and	RFC2582)
	
D-SACK	(RFC	2883)
	
Extended	Congestion	Notification	ECN,	(RFC3168)
	
Adaptive	Initial	Congestion	Windows,	(RFC3390)
	
Slow	Start,	(RFC3390)
	
Appropriate	Byte	Counting	(RFC	3465)
	
Selective	Negative	Acknowledgements,	SNACK	(RFC4077)
	

	

http://tools.ietf.org/html/rfc1323
http://tools.ietf.org/html/rfc2018
http://tools.ietf.org/html/rfc2581
http://tools.ietf.org/html/rfc3042
http://tools.ietf.org/html/rfc2582
http://www.rfc-editor.org/rfc/rfc2883.txt
http://tools.ietf.org/html/rfc3168
http://tools.ietf.org/html/rfc3390
http://tools.ietf.org/html/rfc3390
http://www.rfc-editor.org/rfc/rfc3465.txt
http://tools.ietf.org/html/rfc4077

HTTP	Pipelining
A	HTTP/1.1	performance	improvement	technique	in	which	multiple	client
HTTP	requests	are	sent	on	a	single	TCP	connection,	without	waiting	for	the
corresponding	server	responses.	This	can	provide	a	significant	performance
benefit	particularly	over	high	latency	connections	where	waiting	for	a	response
before	sending	the	next	request	can	cause	considerable	delay.	
	
As	part	of	HTTP/1.1,	conforming	servers	are	required	to	either	support
Pipelining,	or	at	least	not	fail	when	a	client	attempts	to	use	it.	The	server	must
respond	to	each	request	in	order.	Pipelining	relies	on	HTTP	Persistent
Connections,	more	commonly	known	as	HTTP	Keepalives,	described	in	chapter
one.	The	two	are	often	confused,	to	ensure	you	are	not,	take	a	look	at	the
following	two	diagrams	which	should	make	things	very	clear.	You	can	also
calculate	the	time	saving	gained	by	Pipelining	over	a	high	latency	connection;	if
the	one	way	latency	is	0.2s	the	three	requests	and	responses	take	1.2s,	with
Pipelining	it	only	takes	0.4s.

HTTP	Persistent	Connections/Keepalives

	
	
	

	
	

HTTP	Pipelining

	
Pipelining	is	supported	by	Firefox	and	its	variants	(still	the	case	as	of	v35)	but
disabled	by	default.	It	is	not	supported	by	any	version	of	Internet	Explorer.		It	is
supported	by	Google	Chrome	but	disabled	and	cannot	be	enabled	in	standard
builds.	Despite	its	potential	benefits,	issues	with	server	and	proxy	support	and
head	of	line	blocking	explain	the	lack	of	browser	support	or	default	disabled
state.
	

HTTP	Caching
HTTP	caching	is	an	application	level	protocol	performance	optimisation	and
also	another	form	of	server	offload.	Caching	can	be	performed	by	a	client,	a
proxy	server,	a	dedicated	cache,	or	in	the	F5	case,	the	load	balancer.	Often
caching	is	performed	in	multiple	ways	by	multiple	devices	at	once,	the	benefits
are	somewhat	cumulative.	In	all	cases,	caching	typically	reduces	the	number	of
end	to	end	client	server	requests	which	reduces	bandwidth	usage	and	client	page
load	times.
	

With	client	browser	software,	response	content	is	stored	in	a	local	cache
which	is	consulted	when	new	requests	for	content	are	made.	If	the	request
is	for	content	that	is	in	the	cache	(that	has	already	been	requested	and
received)	the	cache	content	is	used	and	displayed.	This	negates	the	need	to
request	it	from	a	remote	server.	This	is	typically	known	as	client-side
caching.

	
Proxy	servers	(forward	proxies)	also	cache	content	in	a	similar	way,
typically	on	behalf	of	multiple	clients	within	a	large	network,	reducing	the
load	on	external	internet	connections.

	
Dedicated	caches	are	typically	used	to	provide	content	on	behalf	of	servers,
thus	reducing	the	load	on	them	in	respect	of	commonly	requested	objects.
These	caches	may	be	placed	close	to	the	servers	(the	offload	benefit	still
applies)	or,	more	likely,	closer	to	clients	(providing	additional	bandwidth
savings).	This	is	typically	known	as	edge	and/or	transparent	caching.

	
In	the	case	of	F5,	server	offload	is	the	primary	focus	and	benefit	and
operation	is	similar	to	that	of	a	dedicated	cache	located	close	to	origin	web
servers	(OWSs).	This	is	typically	known	as	server-side	caching.
	

The	following	diagrams	demonstrate	the	operation	of	caching	in	respect	of
server-side	caching	on	a	F5;
	

Object	is	not	in	the	Cache

	
Object	Is	In	The	Cache

	

	

HTTP	Compression
HTTP	Compression,	part	of	the	HTTP/1.1	standard,	allows	for	the	compression
of	text-based	responses	(and	requests	although	this	is	rarely	seen)	using	the	gzip
or	deflate	algorithms.	This	compression	can	greatly	reduce	the	size	of	the
content	by	up	to	80%	and	improves	performance	dramatically,	as	far	less	data	is
sent	to	the	client	and	bandwidth	used.	Offloading	this	compression	from	the	real
servers	to	the	load	balancer	obviously	also	removes	the	processing	overhead	on
those	servers.
	
HTTP	Compression	is	supported	by	all	modern	web	browsers.
	

The	following	diagram	provides	a	visual	representation	of	HTTP	compression
offload:
	

Further	Reading
The	O’Reilly	published	book:	High	Performance	Browser	Networking,	authored
by	IIya	Grigorik,	is	available	online	for	free	and	provides	significantly	more
detail	on	the	TCP	and	HTTP	performance	related	subjects	covered	in	this
section.	If	you	are	interested	in	learning	more,	you	can	view	the	book	here:
http://chimera.labs.oreilly.com/books/1230000000545/index.html.

	

http://chimera.labs.oreilly.com/books/1230000000545/index.html

Chapter	Summary
BIG-IP	Application	switch	hardware	comes	in	a	wide	range	of	fixed	and
modular	models.	Both	the	physical	hardware	and	the	Virtual	Edition	are
considered	a	form	of	application	delivery	platform;	in	other	words,	they
run	TMOS.
	
Hardware	provides	superior	performance	and	throughput	using	Field-
Programmable	Gate	Array	(FPGA)	circuitry,	specialized	high	performance
network	interfaces	and	optimized	data	paths.	Further	benefits	are	dedicated
hardware	for	SSL	processing	(all	models)	and	compression	processing
(higher	end	models	only)	which	provide	much	higher	performance	than
commodity	processors.
	
HTTP	caching	is	an	application	level	protocol	performance	optimization
and	also	another	form	of	server	offload.	Caching	can	be	performed	by	a
client,	a	proxy	server,	a	dedicated	cache,	or	in	the	F5	case,	the	load
balancer.
	
HTTP	Compression,	part	of	the	HTTP/1.1	standard,	allows	for	the
compression	of	text-based	responses	(and	requests	although	this	is	rarely
seen)	using	the	gzip	or	deflate	algorithms.	This	compression	can	greatly
reduce	the	size	of	the	content	by	up	to	80%	and	improves	performance
dramatically,	as	far	less	data	is	sent	to	the	client.

Chapter	Review
In	order	to	test	your	knowledge	and	understanding	of	this	chapter,	please	answer
the	following	questions.	You	will	find	the	answers	and	explanations	of	the
questions	at	the	end	of	this	chapter.

	
1.	 What	F5	platform	offers	modular	chassis	with	up	to	eight	hot-swappable

blade	modules?

	
a.	 Virtual	Edition

	
b.	 All	physical	editions

	
c.	 VIPRION

	
d.	 All	F5	platforms

	
2.	 What	feature	is	not	available	on	the	Virtual	Edition	platform?

	
a.	 SSL	Hardware	Acceleration

	
b.	 Unlimited	number	of	network	interfaces

	
c.	 OneConnect

	
d.	 iRules

	
	

3.	 What	feature	enables	you	to	send	multiple	client	HTTP	requests	on	a	single
TCP	connection?

	

a.	 TCP	Optimisation
	

b.	 HTTP	Pipelining

	
c.	 HTTP	Caching

	
d.	 HTTP	Compression

	

	

Chapter	Review:	Answers
You	will	find	the	answers	to	the	chapter	review	questions	below:

1.	 The	correct	answer	is:	C
	

a.	 Virtual	Edition
	

b.	 All	physical	editions
	

c.	 VIPRION
	

d.	 All	F5	platforms
	

VIPRION	is	F5	Networks’	high	density	hardware	consolidation	platform;	the
Cisco	Catalyst	6500	of	the	BIG-IP	range	if	you	will.	The	three	VIPRION	models
are	modular	chassis	with	capacity	for	up	to	eight	hot-swappable	blade	modules,
all	featuring	hardware	compression.
	

2.	 The	correct	answer	is:	A
	
a.	 SSL	Hardware	Acceleration

	
b.	 Unlimited	number	of	network	interfaces

	
c.	 OneConnect

	
d.	 iRules

	
	

With	the	Virtual	Edition	you	lose	the	performance	gains	of	hardware
acceleration	particularly	for	SSL.
	

3.	 The	correct	answer	is:	B

	
a.	 TCP	Optimisation

	
b.	 HTTP	Pipelining

	
c.	 HTTP	Caching

	
d.	 HTTP	Compression

	
HTTP	Pipelining	offers	a	performance	improvement	technique	in	which	multiple
client	HTTP	requests	are	sent	on	a	single	TCP	connection,	without	waiting	for
the	corresponding	server	responses.

HTTP	caching	is	an	application	level	protocol	performance	optimisation	and
also	another	form	of	server	offload.	Caching	can	be	performed	by	a	client,	a
proxy	server,	a	dedicated	cache,	or	in	the	F5	case,	the	load	balancer.
HTTP	Compression,	part	of	the	HTTP/1.1	standard,	allows	for	the	compression
of	text-based	responses	(and	requests	although	this	is	rarely	seen)	using	the	gzip
or	deflate	algorithms.

Appendix	A	-	How	Does	SAML	Work?
	

There	are	three	entities	that	are	defined	and	used	by	SAML;	the	client,	the
Service	Provider	(the	company	that	provides	the	service)	and	the	Identity
Provider.	The	Service	Provider	is	usually	a	cloud	based	application	but	it	could
be	any	application	(website)	that	has	SAML	support.
	

There	are	two	methods	to	authenticate	a	user	using	SAML	and	both	methods	are
described	in	the	following	diagram.
	

Service	Provider	Initiated

	

	
1.	 Client	requests	the	resource	from	the	server	via	a	web	browser.	The	URL

will	most	of	the	time	include	the	company	name	in	order	to	discover	what
Identity	Provider	the	user	should	get	redirected	to.	For	example
https://f5.example.com/myresource.	If	there	are	no	company	name	in	the
URL	the	user	might	be	asked	for	its	username	in	order	for	the	service
provider	to	discover	the	Identity	Provider.
	

2.	 The	server	performs	a	security	check	on	behalf	of	the	target	resource	and
discovers	the	Identity	Provider.
	

3.	 The	client	is	redirected	to	the	Identity	Provider.	The	URL	could	look
something	like	this.	https://f5.example.com/SAML2/SSO/Redirect?
SAMLRequest-request
	
	

4.	 Now	the	client	sends	an	AuthnRequest	to	the	Identity	Provider.	The	web
browser	issues	a	GET	request	to	the	Identity	Provider	where	the	value	of
the	SAMLRequest	parameter	is	taken	from	the	URL	query	string
	

5.	 The	Identity	Provider	processes	the	AuthnRequest	and	performs	a	security
check	on	the	user.

	

Note								The	Identity	Provider	has	multiple	ways	to	identify
the	user	and	it	all	depends	on	how	you	have	configured	it.
The	Identity	Provider	could	be	connected	with	your
Centralized	Authentication	system	and	automatically	grant
you	permissions	or	the	Identity	Provider	would	ask	you	for
your	credentials.

	
	

6.	 The	Identity	Provider	asks	for	credentials
	

7.	 The	client	responds	with	credentials	and	the	Identity	Provider	confirms	the
user’s	identity.

	

8.	 If	the	Identity	Provider	was	able	to	authorize	the	user	it	will	create	a	token

that	is	send	back	to	the	user.	This	token	will	be	sent	back	to	the	service
provider	in	order	to	verify	its	identity.	It	will	also	be	used	for	other	sites
supporting	SAML	so	the	process	of	identifying	the	user	will	not	occur
every	time	a	user	tries	to	access	a	resource.
	

9.	 The	SAML	token	is	forwarded	to	the	server
	
10.																						The	server	confirms	that	the	SAML	token	is	valid.
	
11.																						And	finally,	the	resource	is	sent	to	the	client.

	

Identity	Provider	Initiated

	
1.	 The	user	logs	on	to	the	client	computer	and	authenticates	to	the	Centralized

Authentication	system
	

2.	 Now	the	user	tries	to	access	the	web	resource.
	

3.	 Instead	of	sending	the	user	to	the	Service	Provider	directly,	the	user	is	sent
to	the	Identity	Provider	that	is	connected	to	the	Centralized	Authentication
system.
	

4.	 Since	the	user	has	already	provided	its	credentials	when	it	logged	on,	the
Identity	Provider	can	verify	the	user’s	identity	by	asking	the	Centralized
Authentication	system.
	

5.	 The	Identity	Provider	creates	a	token	that	is	sent	back	to	the	client.

	
6.	 The	client	forwards	this	token	to	the	Service	Provider	(the	web	resource)

	
7.	 The	Service	Provider	confirms	that	the	token	is	valid	and	grants	the	user

access	to	the	resource.
	

8.	 The	resource	is	sent	back	to	the	client.
	

Appendix	B	–	A	History	of	Load	Balancing
	

Here	you’ll	find	a	visual	representation	of	the	company	and,	to	a	lesser	extent,
product	history	of	the	load	balancing/application	delivery	field.	You’ll	note	there
are	some	interesting	clusters;
	

There’s	a	huge	amount	of	companies	being	founded	or	going	public
between	1995	–	2000
	
Cisco	and	Citrix	are	clearly	the	‘beasts’	in	this	field,	perhaps	due	to	their
‘early	start’
	
F5	Seems	to	have	been	well	motivated	by	the	crashes	of	the	early	2000’s	to
release	major	features
	
There	is	much	acquisition	activity	in	the	mid	to	late	2000’s
	
Lots	of	product	withdrawals	in	the	late	2000’s

	

	Disclaimer
	Permission Notice
	Preface
	About The Authors
	Dedications
	Acknowledgements
	Feedback

	1. Introduction
	The Book Series
	Who is This Book For?
	How This Book is Organized
	F5 Networks the Company
	F5 Terminology

	2. The Application Delivery Fundamentals Exam
	The F5 Professional Certification Program
	Additional Resources

	3. The OSI Reference Model
	Layer 1 – Physical Layer
	Layer 2 – The Data Link Layer
	Layer 3 – The Network Layer
	Layer 4 – The Transport Layer
	Layer 5 – The Session Layer
	Layer 6 – The Presentation Layer
	Layer 7 – The Application Layer
	Chapter Summary
	Chapter Review
	Chapter Review: Answers

	4. The Data Link Layer in Detail
	Ethernet Access Method CSMA/CD
	Collision Domains
	MAC Addressing
	Broadcast Domains
	Address Resolution Protocol (ARP)
	VLANs & VLAN Tagging
	Link Aggregation Control Protocol (LACP)
	Chapter Summary
	Chapter Review
	Chapter Review: Answers

	5. The Network Layer in Detail
	Understanding IP Addressing
	Converting Between Binary & Decimal
	Addresses Classes
	Private Addresses
	Classless Inter-Domain Routing (CIDR)
	Broadcast Addresses
	Fragmentation
	Time to Live (TTL)
	TCP/IPv6
	Different IPv6 Addresses
	The Structure of an IPv6 Address
	Chapter Summary
	Chapter Exercises
	Chapter Exercises – Answers
	Chapter Review
	Chapter Review: Answers

	6. The Transport Layer in Detail
	Transmission Control Protocol – TCP
	TCP Options
	The Three Way Handshake (3WHS)
	User Datagram Protocol – UDP
	TCP Device Communications
	Retransmission
	MTU & MSS
	Flow Control & Window Size
	Silly window
	Ports & Services
	TCP Reset Packets
	Delayed Binding
	Chapter Summary
	Chapter Review
	Chapter Review: Answers

	7. Switching & Routing
	Switching
	Routing
	Dynamic Routing Protocols
	IP & MAC Address Changes
	Routing In Action
	Network Address Translation (NAT)
	Chapter Summary
	Chapter Review
	Chapter Review: Answers

	8. The Application Layer in Detail
	Hypertext Transfer Protocol (HTTP)
	Domain Name System (DNS)
	Session Initiation Protocol (SIP)
	File Transfer Protocol (FTP)
	The Difference between Active FTP and Passive FTP
	Simple Mail Transfer Protocol (SMTP)
	Chapter Summary
	Chapter Review
	Chapter Review: Answers

	9. F5 Solutions & Technology
	Access Policy Manager (APM)
	Application Security Manager (ASM)
	Local Traffic Manager (LTM)
	Global Traffic Manager (GTM)
	Enterprise Manager (EM)
	WebAccelerator (WAM)
	WAN Optimization Manager (WOM)
	Edge Gateway
	ARX
	iRules
	iApps
	iControl
	iHealth
	iQuery
	Full Application Proxy
	Packet Based Proxy/FastL4
	High Availability (HA)
	Chapter Summary
	Chapter Review
	Chapter Review: Answers

	10. Load Balancing Essentials
	What Is A Load Balancer?
	Load Balancing Methods
	Persistence
	OneConnect
	The Client & Server
	Chapter Summary
	Chapter Review
	Chapter Review: Answers

	11. Security
	Positive & Negative Security Models
	Authentication and Authorization
	Virtual Private Networks (VPNs)
	Chapter Summary
	Chapter Review
	Chapter Review: Answers

	12. Public Key Infrastructure (PKI)
	What is Public Key Infrastructure?
	The Basics of Encryption
	Symmetric Encryption
	Asymmetric Encryption
	The Hash Process
	Hash Algorithms
	Digital Signing
	Combining Asymmetric Signing & Hash Algorithms
	Certificate Chains and Certificate Authorities
	Certificate Revocation Lists (CRLs)
	Chapter Summary
	Chapter Review
	Chapter Review: Answers

	13. Application Delivery Platforms
	BIG-IP Hardware
	BIG-IP Virtual Edition (VE)
	Virtual Edition vs. Hardware
	TCP Optimisation
	HTTP Pipelining
	HTTP Caching
	HTTP Compression
	Further Reading
	Chapter Summary
	Chapter Review
	Chapter Review: Answers

	Appendix A - How Does SAML Work?
	Appendix B – A History of Load Balancing

